ZX Spectrum Next

Assembler Developer Guide

Tomaz Kragelj

ZX Spectrum Next Assembler Developer Guide

Tomaz Kragelj
15 September 2021

REVISIONS
2021-09-15
2021-07-16

Copyright (©) 2021 Tomaz Kragelj
Copyright (©) 2005 Jan Wilmans
Copyright (©) 1997, 1998, 2001, 2003, 2005 Sean Young

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

Contents

Chapter 1

Introduction

1.1 Where to get this document

7ZX Spectrum Next Assembler Developer Guide is available as coil bound printed book on
https://bit.ly/zx-next-assembler-dev-guide

You can also download it as PDF document from GitHub where you can also find its source
KTEX form so you can edit it to your preference

https://github.com/tomaz/zx-next-dev-guide

1.2 Companion Source Code

GitHub repository also includes companion source code. Sample projects were created in a
cross-platform environment on Windows so instructions here are written with these in mind.
But consider them merely as a suggestion; you should be able to use your preferred editor or
tools.

CHAPTER 1. INTRODUCTION

Visual Studio Code (https://code.visualstudio.com/)
My code editor of choice! I use it with the following plugins:

DeZog plugin (https://github.com/maziac/DeZog)

Essential plugin; features list is too large to even attempt to enumerate here but essentially
turns VS Code into a fully-fledged debugging environment.

Z80 Macro-Assembler (https://github.com/mborik/z80-macroasm-vscode)
Another must-have plugin for the Z80 assembly developer; syntax highlighting, code
formatting and code completion, renaming etc.

Z80 Instruction Set (https://github.com/maziac/z80-instruction-set)

Adds mouse hover action above any Z80N instruction for quick info.

Z80 Assembly meter (https://github.com/theNestruo/z80-asm-meter-vscode)

Shows the sum of clock cycles and machine code bytes for all instructions in the current
selection.

sjasmplus 1.18.2 (https://github.com/z00m128/sjasmplus)

Source code includes sjasmplus specific directives for creating nex files at the top and bottom
of main.asm files; if you use a different compiler, you may need to tweak or comment them out.

VS Code projects are set up to expect binaries in a specific folder. You will need to download
and copy so that sjasmplus.exe is located in Tools/sjasmplus.

CSpect 2.13.0 (http://cspect.org)

Similar to sjasmplus, CSpect binaries are expected in a specific folder. To install, download
and copy so that CSpect.exe is located in Tools/CSpect folder.

CSpect Next Image (http://www.zxspectrumnext.online/#sd)

You will also need to download the ZX Spectrum Next image file and copy it to the folder
where CSpect.exe is located. I use a 2GB image, hence VS Code project file is configured for
that. If you use a different image, make sure to update .vscode/tasks. json file.

DeZog CSpect plugin (https://github.com/maziac/DeZogPlugin)

DeZog requires this plugin to be installed to work with CSpect. To install, download and copy
to the same folder where CSpect.exe is located. Make sure the plugin version matches the
DeZog version!

Note: you need to have CSpect launched before you can run the samples. I created couple tasks! for it: open
VS Code command palette (Ctrl+Shift+P shortcut on my installation) and select Tasks: Run Task option,
then select Launch CSpect from list. This is only needed once. Afterwards, use Run > Start Debugging from
the main menu to compile and launch the program.

Note: default DeZog port of 11000 doesn’t work on my computer, so I changed it to 13000. This needs to
be managed in 2 places: .vscode/launch. json and on the plugin side. Companion code repository already
includes the setup needed, including DeZogPlugin.dll.config file, so it should work out of the box.

Note: sample projects are ready for ZEsarUX as well, select the option from debugging panel in VS Code.

"Workspace tasks seem to not be supported in some later VS Code versions. If this is the case for you, copy
them to user tasks (shared between projects): open .vscode/tasks. json file from any of the sample projects,
scroll down a little and copy Launch CSpect and Launch ZEsarUX tasks to user tasks. You can do this all from
within VS Code. To open the user tasks file, open the command palette and start typing open user tasks,
then select the option from the drop-down menu.

CHAPTER 1. INTRODUCTION

1.3 Background, Contact & Feedback

My first computer was ZX Spectrum 48K. Initially, it was only used to play games, but my
creative mind soon set me on the path of building simple games of my own in BASIC. While
too young to master assembler at that point, the idea stayed with me. ZX Spectrum Next
revived my wish to learn Z80 and return to writing games for the platform.

My original intent was to have coil bound list of all ZX Next instructions so I can quickly
compare. However, after finding Z80 Undocumented online, it felt like a perfect starting point.
And with additional information included, it also encouraged me to extend the mere instructions
list with the Next specific chapters. So in a way, this book represents my notes as I was learning
those topics. That being said, I did my best to present information as a reference to keep the
book relevant.

English is not my native tongue. And our mind is not the best tool to correct our own work
either. Since I can’t afford a professional proofreader, mistakes are a matter of fact I'm afraid.
If you spot something or want to contribute, feel free to open an issue on GitHub. Pull requests
are also welcome! If you want to contribute, but are unsure of what, check the accompanying
readme file on GitHub for ideas. If you want to discuss in advance, or for anything else, you
can find me on email tkragelj@gmail.com or Twitter @tomsbarks.

That being said, I hope you’ll enjoy reading this document as much as I did writing it!

Sincerely, Tomaz

CHAPTER 1. INTRODUCTION

1.4 Z80 Undocumented

As the saying “standing on the shoulders of giants” goes, this book is also based on pre-existing
work from Jan and Sean. While my work is ZX Spectrum Next developer-oriented, their original
project was more focused on hardware perspective, for Z80 emulator developers.

If interested, you can find it at http://www.myquest.nl/z80undocumented/.

Jan

http://www.myquest.nl/z80undocumented/
Email jw@dds.nl
Twitter @janwilmans

Interested in emulation for a long time, but a few years after Sean started writing this document,
I have also started writing my own MSX emulator in 2003 and I've used this document quite
a lot. Now (2005) the Z80 emulation is nearing perfection, I decided to add what extra I have
learned and comments various people have sent to Sean, to this document.

I have restyled the document (although very little) to fit my personal needs and I have checked
a lot of things that were already in here.

Sean
http://www.msxnet.org/

Ever since I first started working on an MSX emulator, I've been very interested in getting
the emulation absolutely correct - including the undocumented features. Not just to make sure
that all games work, but also to make sure that if a program crashes, it crashes exactly the
same way if running on an emulator as on the real thing. Only then is perfection achieved.

I set about collecting information. I found pieces of information on the Internet, but not
everything there is to know. So I tried to fill in the gaps, the results of which I put on my
website. Various people have helped since then; this is the result of all those efforts and to my
knowledge, this document is the most complete.

CHAPTER 1. INTRODUCTION

1.5 ChangeLog

15 September 2021 Corrections and updates based on community comments - with special
thanks to Peter Ped Helcmanovsky. Restructured and updated many ZX Next chapters:
added sample code to ports, completely restructured memory map and paging, added
new palette chapter including 9-bit palette handling, updated ULA with shadow screen
info and added Next extended keyboard description. Other than that couple of cosmetic
changes: redesigned title, copyright pages etc. Also, many behind the scenes improvements
like splitting previous huge single KTEX file into multiple per-chapter/section. This is
not only more manageable but can also compile much faster.

16 July 2021 Added ZX Spectrum Next information and instructions and restructured text
for better maintainability and readability.

18 September 2005 Corrected a textual typo in the R register and memory refresh section,
thanks to David Aubespin. Corrected the contradiction in the DAA section saying the NF
flag was both affected and unchanged :) thanks to Dan Meir. Added an error in official
documentation about the way Interrupt Mode 2 works, thanks to Aaldert Dekker.

15 June 2005 Corrected improper notation of JP x,nn mnemonics in opcode list, thanks to
Laurens Holst. Corrected a mistake in the INI, INIR, IND, INDR section and documented
a mistake in official Z80 documentation concerning Interrupt Mode 2, thanks to Boris
Donko. Thanks to Aaldert Dekker for his ideas, for verifying many assumptions and for
writing instruction exercisers for various instruction groups.

18 May 2005 Added an alphabetical list of instructions for easy reference and corrected
an error in the 16-bit arithmetic section, SBC HL,nn sets the NF flag just like other
subtraction instructions, thanks to Fredrik Olssen for pointing that out.

4 April 2005 I (Jan jw@dds.nl) will be maintaining this document from this version on. I
restyled the document to fix the page numbering issues, corrected an error in the I/O
Block Instructions section, added graphics for the RLD and RRD instructions and corrected
the spelling in several places.

20 November 2003 Again, thanks to Ramsoft, added PV flag to OUTI, INI and friends.
Minor fix to DAA tables, other minor fixes.

13 November 2003 Thanks to Ramsoft, add the correct tables for the DAA instruction (section
??). Minor corrections & typos, thanks to Jim Battle, David Sutherland and most of all
Fred Limouzin.

September 2001 Previous documents I had written were in plain text and Microsoft Word,
which I now find very embarrassing, so I decided to combine them all and use ETEX.
Apart from a full re-write, the only changed information is “Power on defaults” (section
??) and the algorithm for the CF and HF flags for OTIR and friends (section 77?).

CHAPTER 1. INTRODUCTION

This page intentionally left empty

Chapter 2

Zilog Z.80

OVERVIEW

2.1 Overview

2.1.1 History of the Z80

In 1969 Intel was approached by a Japanese company called Busicom to produce chips for
Busicom’s electronic desktop calculator. Intel suggested that the calculator should be built
around a single-chip generalized computing engine and thus was born the first microprocessor
- the 4004. Although it was based on ideas from a much larger mainframe and mini-computers
the 4004 was cut down to fit onto a 16-pin chip, the largest that was available at the time, so
that its data bus and address bus were each only 4-bits wide.

Intel went on to improve the design and produced the 4040 (an improved 4-bit design) the 8008
(the first 8-bit microprocessor) and then in 1974 the 8080. This last one turned out to be a
very useful and popular design and was used in the first home computer, the Altair 8800, and
CP/M.

In 1975 Federico Faggin who had worked at Intel on the 4004 and its successors left the company
and joined forces with Masatoshi Shima to form Zilog. At their new company, Faggin and Shima
designed a microprocessor that was compatible with Intel’s 8080 (it ran all 78 instructions of
the 8080 in almost the same way that Intel’s chip did)! but had many more abilities (an extra
120 instructions, many more registers, simplified connection to hardware). Thus was born the
mighty Z80, and thus was the empire forged!

The original Z80 was first released in July 1976, coincidentally Jan was born in the very same
month. Since then newer versions have appeared with much of the same architecture but
running at higher speeds. The original Z80 ran with a clock rate of 2.5MHz, the Z80A runs at
4AMHz, the Z80B at 6MHz and the Z80OH at 8Mhz.

Many companies produced machines based around Zilog’s improved chip during the 1970s and
80’s and because the chip could run 8080 code without needing any changes to the code the
perfect choice of the operating system was CP /M.

Also, Zilog has created a 7280, an enhanced version of the Zilog Z80 with a 16-bit architecture,
introduced in July 1987. It added an MMU to expand addressing to 16Mb, features for
multitasking, a 256-byte cache, and a huge number of new opcodes (giving a total of over
2000!). Its internal clock runs at 2 or 4 times the external clock (e.g. a 16MHz CPU with a
4MHz bus.

The 7380 CPU incorporates advanced architectural while maintaining Z80/Z180 object code
compatibility. The Z380 CPU is an enhanced version of the Z80 CPU. The Z80 instruction
set has been retained, adding a full complement of 16-bit arithmetic and logical operations,
multiply and divide, a complete set of register-to-register loads and exchanges, plus 32-bit load
and exchange, and 32-bit arithmetic operations for address calculations.

The addressing modes of the Z80 have been enhanced with Stack pointer relative loads and
stores, 16-bit and 24-bit indexed offsets and more flexible indirect register addressing. All of
the addressing modes allow access to the entire 32-bit addressing space.

!Thanks to Jim Battle (frustum@pacbell.net): the 8080 always puts the parity in the PF flag; VF does
not exist and the timing is different. Possibly there are other differences.

CHAPTER 2. ZILOG Z80

2.1.2 Registers

The following accessible registers exist in the Z80.

A | F | } Accumulator and Flags

BC

DE General purpose registers

HL

g }Index registers

PC

SP Special purpose registers
IR

AR’

BC’ .
DB Alternate general purpose registers
HL’

2.1.3 Flags

The conventional way of denoting the flags is with one letter, “C” for the carry flag for example.
It could be confused with the C register, so I've chosen to use the “CEF” notation for flags (except
“P” which uses “PV” notation due to having dual-purpose, either as parity or overflow). And
for YF and XF the same notation is used in MAME?Z.

bit | 7 | 6 5 4 3 2 1 0
flag | SF | ZF | YF | HF | XF | PF | NF | CF

SF Set if the 2-complement value is negative; simply a copy of the most significant bit.
ZF Set if the result is zero.
YF A copy of bit 5 of the result.

HF The half-carry of an addition/subtraction (from bit 3 to 4). Needed for BCD correction
with DAA.

XF A copy of bit 3 of the result.

PV This flag can either be the parity of the result (PF), or the 2-complement signed overflow
(VF): set if 2-complement value doesn’t fit in the register.

NF Shows whether the last operation was an addition (0) or a subtraction (1). This information
is needed for DAA.?

CF The carry flag, set if there was a carry after the most significant bit.

’http://wuw.mame.net/
3Wouldn'’t it be better to have separate instructions for DAA after addition and subtraction, like the 80x86
has instead of sacrificing a bit in the flag register?

OVERVIEW

2.1.4 Pin Descriptions [?]

This section might be relevant even if you don’t do anything with hardware; it might give you
insight into how the Z80 operates. Besides, it took me hours to draw this.

J

Ay 40 [JAqo
AnO2 39 [TAg
Az 3 38[1As
Ay 4 37 047
A5 5 36 [1As
CLK[6 35145
Ds 7 34 [1A,
D3] 8 33143
Ds[]9 324,
Dg[J10 3114
+5vr11 289 Pl ha,
Do[12 29 [GND
D, 13 28 [JRFSH
Do 14 27 OM1
D115 26 [1RESET
INTLC]16 25 [[1BUSREQ
NMIC17 24 [OWAIT
HALTO]18 23 [1BUSACK
MREQL]19 22 [1WR
TORQ[]20 21 [1RD

Ays — Ay Address bus (output, active high, 3-state). This bus is used for accessing the memory
and for I/O ports. During the refresh cycle the IR register is put on this bus.

BUSACK Bus Acknowledge (output, active low). Bus Acknowledge indicates to the requesting
device that the CPU address bus, data bus, and control signals MREQ, IORQ, RD and WR have
been entered into their high-impedance states. The external device now control these lines.

BUSREQ Bus Request (input, active low). Bus Request has a higher priority than NMI and is
always recognised at the end of the current machine cycle. BUSREQ forces the CPU address
bus, data bus and control signals MREQ, IORQ, RD and WR to go to a high-impedance state
so that other devices can control these lines. BUSREQ is normally wired-OR and requires
an external pullup for these applications. Extended BUSREQ periods due to extensive DMA
operations can prevent the CPU from refreshing dynamic RAMs.

D; — Do Data Bus (input/output, active low, 3-state). Used for data exchanges with memory,
I/O and interrupts.

HALT Halt State (output, active low). Indicates that the CPU has executed a HALT instruction
and is waiting for either a maskable or nonmaskable interrupt (with the mask enabled) before
operation can resume. While halted, the CPU stops increasing the PC so the instruction is
re-executed, to maintain memory refresh.

INT Interrupt Request (input, active low). Interrupt Request is generated by 1/O devices. The
CPU honours a request at the end of the current instruction if IFF1 is set. INT is normally
wired-OR and requires an external pullup for these applications.

IORQ Input/Output Request (output, active low, 3-state). Indicates that the address bus holds
a valid I/O address for an I/O read or write operation. I0RQ is also generated concurrently

10

CHAPTER 2. ZILOG Z80

with M1 during an interrupt acknowledge cycle to indicate that an interrupt response vector
can be placed on the databus.

M1 Machine Cycle One (output, active low). M1, together with MREQ, indicates that the current
machine cycle is the opcode fetch cycle of an instruction execution. M1, together with TORQ,
indicates an interrupt acknowledge cycle.

MREQ Memory Request (output, active low, 3-state). Indicates that the address holds a valid
address for a memory read or write cycle operations.

NMI Non-Maskable Interrupt (input, negative edge-triggered). NMI has a higher priority than
INT. NMI is always recognised at the end of an instruction, independent of the status of the
interrupt flip-flops and automatically forces the CPU to restart at location $0066.

RD Read (output, active low, 3-state). Indicates that the CPU wants to read data from memory
or an I/O device. The addressed I/O device or memory should use this signal to place data
onto the data bus.

RESET Reset (input, active low). Initializes the CPU as follows: it resets the interrupt flip-flops,
clears the PC and IR registers, and set the interrupt mode to 0. During reset time, the
address bus and data bus go to a high-impedance state, and all control output signals go to
the inactive state. Note that RESET must be active for a minimum of three full clock cycles
before the reset operation is complete. Note that Matt found that SP and AF are set to
$FFFF.

RFSH Refresh (output, active low). RFSH, together with MREQ, indicates that the IR registers
are on the address bus (note that only the lower 7 bits are useful) and can be used for the
refresh of dynamic memories.

WAIT Wait (input, active low). Indicates to the CPU that the addressed memory or I/O device
are not ready for data transfer. The CPU continues to enter a wait state as long as this
signal is active. Note that during this period memory is not refreshed.

WR Write (output, active low, 3-state). Indicates that the CPU wants to write data to memory
or an I/O device. The addressed I/O device or memory should use this signal to store the
data on the data bus.

2.1.5 Power on Defaults

Matt* has done some excellent research on this. He found that AF and SP are always set to
$FFFF after a reset, and all other registers are undefined (different depending on how long the
CPU has been powered off, different for different Z80 chips). Of course, the PC should be set to
0 after a reset, and so should the IFF1 and IFF2 flags (otherwise strange things could happen).
Also since the Z80 is 8080 compatible, the interrupt mode is probably 0.

Probably the best way to simulate this in an emulator is to set PC, IFF1, IFF2, IM to 0 and set
all other registers to $FFFF.

4redflame@xmission.com

11

UNDOCUMENTED OPCODES

2.2 Undocumented Opcodes

There are quite a few undocumented opcodes/instructions. This section should describe every
possible opcode so you know what will be executed, whatever the value of the opcode is.

The following prefixes exist: CB, ED, DD, FD, DDCB and FDCB. Prefixes change the way the
following opcodes are interpreted. All instructions without a prefix (not a value of one the
above) are single-byte opcodes (without the operand, that is), which are documented in the
official documentation.

2.2.1 CB Prefix [7]

An opcode with a CB prefix is a rotate, shift or bit test/set/reset instruction. A few instructions
are missing from the official list, for example SLL (Shift Logical Left). It works like SLA, for
one exception: it sets bit 0 (SLA resets it).

CB30 SLL B
CB31 SLL C
CB32 SLL D
CB33 SLL E
CB34 SLL H
CB35 SLL L
CB36 SLL (HL)
CB37 SLL A

2.2.2 DD Prefix [?]

In general, the instruction following the DD prefix is executed as is, but if the HL register is
supposed to be used the IX register is used instead. Here are the rules:

e Any usage of HL is treated as an access to IX (except EX DE,HL and EXX and the ED
prefixed instructions that use HL).

e Any access to (HL) is changed to (IX+d), where “d” is a signed displacement byte placed
after the main opcode - except JP (HL), which isn’t indirect anyway. The mnemonic
should be JP HL.

e Any access to H is treated as an access to IXy (the high byte of IX) except if (IX+d) is
used as well.

e Any access to L is treated as an access to IX; (the low byte of IX) except if (IX+d) is
used as well.

A DD prefix before a CB selects a completely different instruction set, see section ?77.

12

CHAPTER 2. ZILOG Z80

Some examples:

Without DD prefix With DD prefix

LD H, (HL) LD H, (IX+d)
LD H, A LD IXH, A
LD L, H LD IXL, IXH
Jp (HL) Jp (IX)

LD DE, 0 LD DE, 0

LD HL, O LD IX, O

2.2.3 FD Prefix [?]

This prefix has the same effect as the DD prefix, though IY is used instead of IX. Note LD IXL,
IYH is not possible: only IX or IY is accessed in one instruction, never both.

2.2.4 ED Prefix [7]

There are a number of undocumented EDxx instructions, of which most are duplicates of
documented instructions. Any instruction not listed here has no effect (same as 2 NOPs).
indicates undocumented instruction:

ED40 1IN B, (C) ED50 1IN D, (C)
ED41 0UT (C), B ED51 OUT (C), D
ED42 SBC HL, BC ED52 SBC HL, DE
ED43 LD (nn), BC ED53 LD (nn), DE
ED44 NEG ED54 NEG**

ED45 RETN ED55 RETN**

ED46 IM O ED56 IM 1

ED47 LD I, A ED57 LD A, I
ED48 1IN C, (C) ED58 IN E, (C)
ED49 0UT (C), C ED59 0OUT (C), E
ED4A ADC HL, BC ED5A ADC HL, DE
ED4B LD BC, (nn) ED5B LD DE, (nn)
ED4C NEG** ED5C NEG**

ED4D RETI ED5D RETN**

ED4E IM 0** EDSE IM 2

ED4F ID R, A EDSF 1D A, R

13

UNDOCUMENTED OPCODES

ED60 IN H, (C) ED70 IN (C) / IN F, (C)**
ED61 OUT (C), H ED71 0OUT (C), 0**
ED62 SBC HL, HL ED72 SBC HL, SP
ED63 LD (nn), HL ED73 LD (nn), SP
ED64 NEG** ED74 NEG**

ED65 RETN** ED75 RETN**

ED66 IM 0** ED76 IM 1**

ED67 RRD ED77 NOP**

ED68 IN L, (C) ED78 1IN A, (C)
ED69 0OUT (C), L ED79 0OUT (C), A
ED6A ADC HL, HL ED7A ADC HL, SP
ED6B LD HL, (nn) ED7B LD SP, (an)
ED6C NEG** ED7C NEG**

ED6D RETN** ED7D RETN**

ED6E IM 0** ED7E IM 2**

ED6F RLD ED7F NOP**

The ED70 instruction reads from 1/O port C, but does not store the result. It just affects the
flags like the other IN x, (C) instructions. ED71 simply outs the value 0 to I/O port C.

The ED63 is a duplicate of the 22 opcode (LD (nn) ,HL) and similarly ED6B is a duplicate of the
2A opcode (LD HL, (nn)). Of course the timings are different. These instructions are listed in
the official documentation.

According to Gerton Lunter®:

The instructions ED 4E and ED 6E are IM O equivalents: when FF was put on the
bus (physically) at interrupt time, the Spectrum continued to execute normally,
whereas when an EF (RST $28) was put on the bus it crashed, just as it does in that
case when the Z80 is in the official interrupt mode 0. In IM 1 the Z80 just executes
a RST $38 (opcode FF) no matter what is on the bus.

All the RETI/RETN instructions are the same, all like the RETN instruction. So they all, including
RETI, copy IFF2 to IFF1. See section ?? for more information on RETI and RETN and IM x.

2.2.5 DDCB Prefix

The undocumented DDCB instructions store the result (if any) of the operation in one of the
seven all-purpose registers. Which one depends on the lower 3 bits of the last byte of the opcode
(not operand, so not the offset).

000 B 100 H
001 C 101 L
010 D 110 (none: documented opcode)
011 E 111 A

Sgerton@math.rug.nl

14

CHAPTER 2. ZILOG Z80

The documented DDCB0106 is RLC (IX+$01). So, clear the lower three bits (DDCB0100) and
something is done to register B. The result of the RLC (which is stored in (IX+$01)) is now also
stored in register B. Effectively, it does the following:

LD B, (IX+$01)
RLC B
LD (IX+$01), B

So you get double value for money. The result is stored in B and (IX+$01). The most common
notation is: RLC (IX+$01), B

I’ve once seen this notation:

RLC (IX+$01)
LD B, (IX+$01)

That’s not correct: B contains the rotated value, even if (IX+$01) points to ROM. The DDCB
SET and RES instructions do the same thing as the shift /rotate instructions:

DDCB10CO SET 0, (IX+$%$10), B
DDCB10C1 SET 0, (IX+$%$10), C
DDCB10C2 SET 0, (IX+$10), D
DDCB10C3 SET 0, (IX+$10), E
DDCB10C4 SET 0, (IX+$10), H
DDCB10C5 SET 0, (IX+$10), L
DDCB10C6 SET 0, (IX+$10) - documented instruction
DDCB10C7 SET 0, (IX+$10), A

So for example with the last instruction, the value of (IX+$10) with bit 0 set is also stored in
register A.

The DDCB BIT instructions do not store any value; they merely test a bit. That’s why the
undocumented DDCB BIT instructions are no different from the official ones:

DDCB d 78 BIT 7, (IX+d)
DDCB d 79 BIT 7, (IX+d)
DDCB d 7A BIT 7, (IX+d)
DDCB d 7B BIT 7, (IX+d)
DDCB d 7C BIT 7, (IX+d)
DDCB d 7D BIT 7, (IX+d)
DDCB d 7E BIT 7, (IX+d) - documented instruction
DDCB d 7F BIT 7, (IX+d)

15

UNDOCUMENTED EFFECTS

2.2.6 FDCB Prefixes

Same as for the DDCB prefix, though IY is used instead of IX.

2.2.7 Combinations of Prefixes

This part may be of some interest to emulator coders. Here we define what happens if strange
sequences of prefixes appear in the instruction cycle of the Z80.

If CB or ED is encountered, that byte plus the next make up an instruction. FD or DD should be
seen as prefix setting a flag which says “use IX or IY instead of HL”, and not an instruction.
In a large sequence of DD and FD bytes, it is the last one that counts. Also any other byte (or
instruction) resets this flag.

FD DD 00 21 00 10 NOP NOP NOP LD HL, $1000

2.3 Undocumented Effects

2.3.1 BIT Instructions

BIT n,r behaves much like AND r,2" with the result thrown away, and CF flag unaffected.
Compare BIT 7,A with AND $80: flag YF and XF' are reset, SF is set if bit 7 was actually set;
ZF is set if the result was 0 (bit was reset), and PV is effectively set if ZF is set (the result of
the AND leaves either no bits set (PV set - parity even) or one bit set (PV reset - parity odd).
So the rules for the flags are:

SF flag Set if n = 7 and tested bit is set.

ZF flag Set if the tested bit is reset.

YF flag Set if n = 5 and tested bit is set.

HF flag Always set.

XF flag Set if n = 3 and tested bit is set.

PV flag Set just like ZF flag.

NF flag Always reset.

CF flag Unchanged.

This is where things start to get strange. With the BIT n, (IX+d) instructions, the flags behave
just like the BIT n,r instruction, except for YF and XF. These are not copied from the result

but from something completely different, namely bit 5 and 3 of the high byte of IX+d (so IX
plus the displacement).

16

CHAPTER 2. ZILOG Z80

Things get more bizarre with the BIT n, (HL) instruction. Again, except for YF and XF, the
flags are the same. YF and XF are copied from some sort of internal register. This register
is related to 16-bit additions. Most instructions do not change this register. Unfortunately, I
haven’t tested all instructions yet, but here is the list so far:

ADD HL, xx Use high byte of HL, ie. H before the addition.
LD r, (IX+d) Use high byte of the resulting address IX+d.
JR d Use high byte target address of the jump.
IDr, r’ Doesn’t change this register.

Any help here would be most appreciated!

2.3.2 Memory Block Instructions [7]

The LDI/LDIR/LDD/LDDR instructions affect the flags in a strange way. At every iteration, a
byte is copied. Take that byte and add the value of register A to it. Call that value n. Now,
the flags are:

YF flag A copy of bit 1 of n.

HF flag Always reset.

XF flag A copy of bit 3 of n.

PV flag Set if BC not 0.

SF, ZF, CF flags These flags are unchanged.

And now for CPI/CPIR/CPD/CPDR. These instructions compare a series of bytes in memory to
register A. Effectively, it can be said they perform CP (HL) at every iteration. The result of that
comparison sets the HF flag, which is important for the next step. Take the value of register
A, subtract the value of the memory address, and finally subtract the value of HF flag, which
is set or reset by the hypothetical CP (HL). So, n=A-(HL) -HF.

SF, ZF, HF flags Set by the hypothetical CP (HL).

YF flag A copy of bit 1 of n.

XF flag A copy of bit 3 of n.

PV flag Set if BC is not 0.

NF flag Always set.

CF flag Unchanged.

17

UNDOCUMENTED EFFECTS

2.3.3 1/0 Block Instructions

These are the most bizarre instructions, as far as the flags are concerned. Ramsoft found all of
the flags. The “out” instructions behave differently than the “in” instructions, which doesn’t
make the CPU very symmetrical.

First of all, all instructions affect the following flags:

SF, ZF, YF, XF flags Affected by decreasing register B, as in DEC B.

NF flag A copy of bit 7 of the value read from or written to an 1/O port.

And now the for OUTI/OTIR/OUTD/OTDR instructions. Take the state of the L after the increment
or decrement of HL; add the value written to the I/O port; call that k for now. If k > 255,
then the CF and HF flags are set. The PV flag is set like the parity of k bitwise and’ed with
7, bitwise xor’ed with B.

HF and CF Both set if ((HL) + L > 255)

PV The parity of ((((HL) + L) A 7) x B)

INI/INIR/IND/INDR use the C register instead of the L register. There is a catch though,
because not the value of C is used, but C + 1 if it’s INI/INIR or C - 1 if it’s IND/INDR. So,
first of all INI/INIR:

HF and CF Both set if ((HL) + ((C + 1) A 255) v 255)

PF The parity of (((HL) + ((C + 1) A 255)) A 7) v B)
And last IND/INDR:

HF and CF Both set if ((HL) + ((C - 1) A 255) > 255)

PF The parity of (((HL) + ((C - 1) A 255)) A 7) v B)

2.3.4 16 Bit I/O ports

Officially the Z80 has an 8-bit I/O port address space. When using the I/O ports, the 16
address lines are used. And in fact, the high 8 bits do have some value, so you can use 65536
ports after all. IN r, (C), OUT (C), r, and the block I/O instructions actually place the
entire BC register on the address bus. Similarly IN A, (n) and OUT (n), A put A x256 + n
on the address bus.

The INI, INIR, IND and INDR instructions use BC before decrementing B, and the OUTI, OTIR,
OUTD and OTDR instructions use BC after decrementing.

18

CHAPTER 2. ZILOG Z80

2.3.5 Block Instructions

The repeated block instructions simply decrement the PC by two so the instruction is simply
re-executed. So interrupts can occur during block instructions. So, LDIR is simply LDI + if BC
is not 0, decrement PC by 2.

2.3.6 16 Bit Additions

The 16-bit additions are a bit more complicated than the 8-bit ones. Since the Z80 is an 8-bit
CPU, 16-bit additions are done in two stages: first, the lower bytes are added, then the two
higher bytes. The SF, YF, HF, XF flags are affected by the second (high) 8-bit addition. ZF
is set if the whole 16-bit result is 0.

2.3.7 DAA Instruction

This instruction is useful when you’re using BCD values. After addition or subtraction, DAA
corrects the value back to BCD again. Note that it uses the CF flag, so it cannot be used after
INC and DEC.

Stefano Donati from Ramsoft® has found the tables which describe the DAA operation. The
input is the A register and the CF, NF, HF flags. The result is as follows:

Depending on the NF flag, the “diff”
from this table must be added (NF is

reset) or subtracted (NF is set) to A: CF flag is affected: NF flag is affected:
high low high low low
CF | nibble | HF | nibble | diff CF | nibble | nibble | CF’ NF | HF | nibble | HF’
0 0-9 0 0-9 00 0 0-9 0-9 0 0 * 0-9 0
0 0-9 1 0-9 06 0 0-8 A-F 0 0 * A-F 1
0 0-8 * A-F 06 0 9-F A-F 1 1 0 * 0
0 A-F 0 0-9 60 0 A-F 0-9 1 1 1 6-F 0
1 * 0 0-9 60 1 * * 1 1 1 0-5 1
1 * 1 0-9 66
1 * * A-F 66
0 9-F * A-F 66
0 A-F 1 0-9 66

SF, YF, XF are copies of bit 7, 5, 3 of the result respectively; ZF is set according to the result
and NF is always unchanged.

Shttp:/ /www.ramsoft.bbk.org/

19

INTERRUPTS

2.4 Interrupts

There are two types of interrupts, maskable and non-maskable. The maskable type is ignored if
IFF1 is reset. Non-maskable interrupts (NMI) will are always accepted, and they have a higher
priority, so if both are requested at the same time, the NMI will be accepted first.

For the interrupts, the following things are important: interrupt Mode (set with the IM 0, IM
1, IM 2 instructions), the interrupt flip-flops (IFF1 and IFF2), and the I register. When a
maskable interrupt is accepted, the external device can put a value on the data bus.

Both types of interrupts increase the R register by one when accepted.

2.4.1 Non-Maskable Interrupts (NMI)

When an NMI is accepted, IFF1 is reset. At the end of the routine, IFF1 must be restored (so
the running program is not affected). That’s why IFF2 is there; to keep a copy of IFF1.

An NMI is accepted when the NMI pin on the Z80 is made low (edge-triggered). The Z80
responds to the change of the line from +5 to 0 - so the interrupt line doesn’t have a state,
it’s just a pulse. When this happens, a call is done to address $0066 and IFF1 is reset so the
routine isn’t bothered by maskable interrupts. The routine should end with an RETN (RETurn
from Nmi) which is just a usual RET but also copies IFF2 to IFF1, so the IFFs are the same as
before the interrupt.

You can check whether interrupts were disabled or not during an NMI by using the LD A, I or
LD A,R instruction. These instructions copy IFF2 to the PV flag.

Accepting an NMI costs 11 t-states.

2.4.2 Maskable Interrupts (INT)

If the INT line is low and IFF1 is set, a maskable interrupt is accepted - whether or not the
last interrupt routine has finished. That’s why you should not enable interrupts during such a
routine, and make sure that the device that generated it has put the INT line up again before
ending the routine. So unlike NMI interrupts, the interrupt line has a state; it’s not a pulse.

When an interrupt is accepted, both IFF1 and IFF2 are cleared, preventing another interrupt
from occurring which would end up as an infinite loop (and overflowing the stack). What
happens next depends on the Interrupt Mode.

A device can place a value on the data bus when the interrupt is accepted. Some computer
systems do not utilize this feature, and this value ends up being $FF.

Interrupt Mode 0 This is the 8080 compatibility mode. The instruction on the bus is
executed (usually an RST instruction, but it can be anything). I register is not used.
Assuming it’s a RST instruction, accepting this takes 13 t-states.

Interrupt Mode 1 This is the 8080 compatibility mode. The instruction on the bus is

20

CHAPTER 2. ZILOG Z80

executed (usually an RST instruction, but it can be anything). I register is not used.
Assuming it’s a RST instruction, accepting this takes 13 t-states.

Interrupt Mode 2 A call is made to the address read from memory. What address is read
from is calculated as follows: (I register) x 256 + (value on bus). Zilog’s user manual
states (very convincingly) that the least significant bit of the address is always 0, so they
calculate the address that is read from as: (I register) x 256 + (value on bus A $FE). 1
have tested this and it’s not correct. Of course, a word (two bytes) is read, making the
address where the call is made to. In this way, you can have a vector table for interrupts.
Accepting this interrupt type costs 19 t-states.

At the end of a maskable interrupt, the interrupts should be enabled again. You can assume
that was the state of the IFFs because otherwise the interrupt wasn’t accepted. So, an interrupt
routine always ends with an EI and a RET (RETI according to the official documentation, more
about that later):

InterruptRoutine:
EI
RETI or RET

Note a fact about EI: a maskable interrupt isn’t accepted directly after it, so the next opportunity
for an interrupt is after the RETI. This is very useful; if the INT line is still low, an interrupt is
accepted again. If this happens a lot and the interrupt is generated before the RETI, the stack
could overflow (since the routine would be called again and again). But this property of EI
prevents this.

DI is not necessary at the start of the interrupt routine: the interrupt flip-flops are cleared
when accepting the interrupt.

You can use RET instead of RETI, depending on the hardware setup. RETI is only useful if you
have something like a Z80 PIO to support daisy-chaining: queuing interrupts. The PIO can
detect that the routine has ended by the opcode of RETI, and let another device generate an
interrupt. That is why I called all the undocumented EDxx RET instructions RETN: All of them
operate alike, the only difference of RETT is its specific opcode which the Z80 PIO recognises.

2.4.3 Things Affecting the Interrupt Flip-Flops

All the IFF related things are:

Accept NMI IFF1 IFF2
CPU reset 0 0

DI 0 0
EI 1 1
Accept INT 0 0
Accept NMI 0
RETI/N IFF2
LD A,I / LD A,R -

All the EDxx RETI/N instructions
Copies IFF2 into PV flag

21

INTERRUPTS

If you're working with a Z80 system without NMIs (like the MSX), you can forget all about
the two separate IFF's; since an NMI isn’t ever generated, the two will always be the same.

Some documentation says that when an NMI is accepted, IFF1 is first copied into IFF2 before
IFF1 is cleared. If this is true, the state of IFF2 is lost after a nested NMI, which is undesirable.
Have tested this in the following way: make sure the Z80 is in EI mode, generate an NMI. In
the NMI routine, wait for another NMI before executing RETN. In the second NMI IFF2 was
still set, so IFF1 is not copied to IFF2 when accepting an NMI.

Another interesting fact: I was trying to figure out whether the undocumented ED RET instructions
were RETN or RETI. I tested this by putting the machine in EI mode, wait for an NMI and end
with one of the ED RET instructions. Then execute a HALT instruction. If IFF1 was not restored,
the machine would hang but this did not happen with any of the instructions, including the
documented RETT!

Since every interrupt routine must end with EI followed by RETI officially, It does not matter
that RETI copies IFF2 into IFF1; both are set anyway.

2.4.4 HALT Instruction

The HALT instruction halts the Z80; it does not increase the PC so that the instruction is
re-executed until a maskable or non-maskable interrupt is accepted. Only then does the Z80
increase the PC again and continues with the next instruction. During the HALT state, the
HALT line is set. The PC is increased before the interrupt routine is called.

2.4.5 Where interrupts are accepted

During the execution of instructions, interrupts won’t be accepted. Only between instructions.
This is also true for prefixed instructions.

Directly after an EI or DI instruction, interrupts aren’t accepted. They’re accepted again after
the instruction after the EI (RET in the following example). So for example, look at this MSX2
routine that reads a scanline from the keyboard:

LD C, A

DI

IN A, ($0ARD)
AND $0FO

ADD A, C

OUT ($0AA), A
EI

IN A, ($0A9)
RET

You can assume that there never is an interrupt after the EI, before the IN A, ($0A9) - which
would be a problem because the MSX interrupt routine reads the keyboard too.

22

CHAPTER 2. ZILOG Z80

Using this feature of EI, it is possible to check whether it is true that interrupts are never
accepted during instructions:

DI

make sure interrupt is active

EI

insert instruction to test
InterruptRoutine:

store PC where interrupt was accepted

RET

And yes, for all instructions, including the prefixed ones, interrupts are never accepted during
an instruction. Only after the tested instruction. Remember that block instructions simply
re-execute themselves (by decreasing the PC with 2) so an interrupt is accepted after each
iteration.

Another predictable test: at the “insert instruction to test” insert a large sequence of EI
instructions. Of course, during the execution of the EI instructions, no interrupts are accepted.

But now for the interesting stuff. ED or CB make up instructions, so interrupts are accepted
after them. But DD and FD are prefixes, which only slightly affects the next opcode. If you test
a large sequence of DDs or FDs, the same happens as with the EI instruction: no interrupts are
accepted during the execution of these sequences.

This makes sense if you think of DD and FD as a prefix that sets the “use IX instead of HL” or
“use IY instead of HL” flag. If an interrupt was accepted after DD or FD, this flag information
would be lost, and:

DD 21 00 00 LD IX, O

could be interpreted as a simple LD HL,O if the interrupt was after the last DD. Which never
happens, so the implementation is correct. Although I haven’t tested this, as I imagine the
same holds for NMI interrupts.

Also see section 77 for details on handling interrupts on ZX Spectrum Next.

23

TIMING AND R REGISTER

2.5 Timing and R register

2.5.1 R register and memory refresh

During every first machine cycle (beginning of instruction or part of it - prefixes have their own
M1 two), the memory refresh cycle is issued. The whole IR register is put on the address bus,
and the RFSH pin is lowered. It’s unclear whether the Z80 increases the R register before or
after putting IR on the bus.

The R register is increased at every first machine cycle (M1). Bit 7 of the register is never
changed by this; only the lower 7 bits are included in the addition. So bit 7 stays the same,
but it can be changed using the LD R, A instruction.

Instructions without a prefix increase R by one. Instructions with an ED, CB, DD, FD prefix,
increase R by two, and so do the DDCBxxxx and FDCBxxxx instructions (weird enough). Just
a stray DD or FD increases the R by one. LD A,R and LD R,A access the R register after it is
increased by the instruction itself.

Remember that block instructions simply decrement the PC with two, so the instructions are
re-executed. So LDIR increases R by BC x 2 (note that in the case of BC = 0, R is increased by
$10000 x 2, effectively 0).

Accepting a maskable or non-maskable interrupt increases the R by one.
After a hardware reset, or after power on, the R register is reset to 0.

That should cover all there is to say about the R register. It is often used in programs for a
random value, which is good but of course not truly random.

24

CHAPTER 2. ZILOG Z80

2.6 FErrors in Official Documentation

Some official Zilog documentation contains errors. Not every documentation has all of these
mistakes, so your milage may vary, but these are just things to look out for.

The flag affection summary table shows that LDI/LDIR/LDD/LDDR instructions leave the
SF and ZF in an undefined state. This is not correct; the SF and ZF flags are unaffected.

Similarly, the same table shows that CPI/CPIR/CPD/CPDR leave the SF and HF flags in an
undefined state. Not true, they are affected as defined elsewhere in the documentation.

Also, the table says about INI/OUTD/etc “Z=0 if B <> 0 otherwise Z=0"; of course the
latter should be Z=1.

The INI/INIR/IND/INDR/OUTI/OUTD/OTIR/OTDR instructions do affect the CF flag (some
official documentation says they leave it unaffected, important!) and the NF flag isn’t
always set but may also be reset (see 7?7 for exact operation).

When an NMI is accepted, the IFF1 isn’t copied to IFF2. Only IFF1 is reset.

In the 8-bit Load Group, the last two bits of the second byte of the LD r, (IX + d)
opcode should be 10 and not 01.

In the 16-bit Arithmetic Group, bit 6 of the second byte of the ADD IX,pp opcode should
be 0, not 1.

IN x,(C) resets the HF flag, it never sets it. Some documentation states it is set
according to the result of the operation; this is impossible since no arithmetic is done
in this instruction.

Note: In zilog’s own z80cpu_um.pdf document, there are a lot of errors, some are very confusing,
so I’ll mention the ones I have found here:

25

e Page 21, figure 2 says “the Alternative Register Set contains 2 B’ registers”; this should

of course be B’ and C’.

e Page 26, figure 16 shows very convincingly that “the least significant bit of the address

to read for Interrupt Mode 2 is always 0”. I have tested this and it is not correct, it can
also be 1, in my test case the bus contained $FF and the address that was read did not
end in $FE but was $FF.

Chapter 3

ZX Spectrum Next

With modern I/O ports, increased CPU speeds, more memory, better graphics, hardware sprites
and tiles, to mention just the most obvious, ZX Spectrum Next is an exciting platform for the

retro programimer.

27

PORTS

3.1 Ports

3.1.1 Mapped Spectrum Ports

RW Addr Mask Description

RW $103B %0001 0000 0011 1011 Sets and reads the 12C SCL line

RW $113B %0001 0001 0011 1011 Sets and reads the 12C SDA line

RW $123B 7%0001 0010 0011 1011 Enables layer 2 and controls paging of layer 2 screen
into lower memory (see 77)

RW $133B %0001 0011 0011 1011 Sends byte to serial port. Read tells if data is
available in RX buffer

RW $143B %0001 0100 0011 1011 Reads data from serial port, write sets the baud rate

RW $153B %0001 0101 0011 1011 Configuration of UART interfaces

-W $1FFD %0001 ---- ---- --0- Controls ROM paging and special paging options
from the 4+2a/+3 (see 77)

RW $243B 70010 0100 0011 1011 Selects active port for TBBlue/Next feature
configuration

RW $253B 70010 0101 0011 1011 Reads and/or writes the selected TBBlue control
register

RW $303B %0011 0000 0011 1011 Sets active sprite-attribute index and pattern-slot
index, reads sprite status (see ?7)

-W $7FFD %01-- ---- ---- —-0- Selects active RAM, ROM, and displayed screen (see
?7)

-W $BFFD %10-- --—— -—-—— —--0- Writes to the selected register of the selected sound
chip (see ?7)

-W $DFFD %1101 1111 1111 1101 Provides additional bank select bits for extended
memory (see 77)

R- $FADF Y-—-—-- --—- 0 --0- ---- Reads buttons on Kempston Mouse

R- $FBDF J---- -0-1 --0- ---- X coordinate of Kempston Mouse, 0-255

R- $FFDF ¥---- -1-1 --0- ---- Y coordinate of Kempston Mouse, 0-192

-W $FFFD %11-- --—— --—— —--0- Controls stereo channels and selects active sound chip

and sound chip channel (see ?7)

28

CHAPTER 3. ZX SPECTRUM NEXT

RW Addr Mask Description

RW $xxOB J---- --——- 0000 1011 Controls Z8410 DMA chip via MB02 standard

R- $xx1F Y- --——- 0001 1111 Reads movement of joysticks using Kempston
interface

RW $xx37 Y- ——— ———= ———- Kempston interface second joystick variant and
controls joystick I/0O

-W $xx57 Y-—-- -——- 0101 0111 Uploads sprite positions, visibility, colour type and
effect flags (see ?7)

-W $xx6B Y———- -——- 0101 1011 Used to upload the pattern of the selected sprite (see
?7)

RW $xx6B %--—— --—- 0110 1011 Controls zxnDMA chip

-W $xxDF Y---- -—-—— -- 01 1111 Output to SpecDrum DAC

RW $xxFE 7XXXX XXXX ———— —-—-— 0 Reading with particular high bytes returns keyboard
status (see 77), write changes border colour and base
Spectrum audio settings (see ?77)

RW $xxFF Y- ——= ———= ———- Controls Timex Sinclair video modes and colours in

29

hi-res mode. Readable when Peripheral 3 Register
$08 bit 2 is set (see ?77?)

PORTS

3.1.2 Next/TBBlue Feature Control Registers

Specific features of the Next are controlled via these register numbers, accessed via TBBlue
Register Select $243B' and TBBlue Register Access $253B2, or via the NEXTREG instruction.

RW Port Description

R- $0 Identifies TBBlue board type. Should always be 10 on Next

R- $1 Identifies core (FPGA image) version

RW $2 Identifies type of last reset. Can be written to force reset

RW $3 Identifies timing and machine type

-W $4 In config mode, allows RAM to be mapped to ROM area

RW $5 Sets joystick mode, video frequency and Scandoubler

RW $6 Enables CPU Speed key, DivMMC, Multiface, Mouse and AY audio

RW $7 Sets CPU Speed, reads actual speed

RW $8 ABC/ACB Stereo, Internal Speaker, SpecDrum, Timex Video Modes, Turbo
Sound Next, RAM contention and (un)lock 128k paging (see ?7?)

RW $9 Sets scanlines, AY mono output, sprite-id lockstep, resets DivMMC mapram and
disables HDMI audio (see ?77)

RW $0A Mouse buttons and DPI config

R- $0E Identifies core (FPGA image) version (sub minor number)

RW $10 Used within the Anti-brick system

RW $11 Sets video output timing variant

RW $12 Sets the bank number where Layer 2 video memory begins (see 77)

RW $13 Sets the bank number where the Layer 2 shadow screen begins

RW $14 Sets the transparent colour for Layer 2, ULA and LoRes pixel data

RW $15 Enables/disables sprites and Lores Layer, and chooses priority of sprites and Layer
2 (see 77)

RW $16 Sets X pixel offset used for drawing Layer 2 graphics on the screen (see 77)

RW $17 Sets Y offset used when drawing Layer 2 graphics on the screen (see ?7)

RW $18 Sets and reads clip-window for Layer 2 (see 77)

RW $19 Sets and reads clip-window for Sprites (see ?77)

RW $1A Sets and reads clip-window for ULA /LoRes layer

RW $1B Sets and reads clip-window for Tilemap (see ?77)

RW $1C Controls (resets) the clip-window registers indices (see ?7)

R- $1E Holds the MSB of the raster line currently being drawn

R- $1F Holds the eight LSBs of the raster line currently being drawn

'https://wiki.specnext.dev/TBBlue Register_Select
’https://wiki.specnext.dev/TBBlue Register_Access

30

CHAPTER 3. ZX SPECTRUM NEXT

RW Port Description

RW $22 Controls the timing of raster interrupts and the ULA frame interrupt

RW $23 Holds the eight LSBs of the line on which a raster interrupt should occur

RW $26 Pixel X offset (0-255) to use when drawing ULA Layer

RW $27 Pixel Y offset (0-191) to use when drawing ULA Layer

RW $28 PS/2 Keymap address MSB, read (pending) first byte of palette colour

-W $29 PS/2 Keymap address LSB

-W $2A High data to PS/2 Keymap (MSB of data in bit 0)

-W $2B Low eight LSBs of PS/2 Keymap data

RW $2C DAC B mirror, read current 12S left MSB

RW $2D SpecDrum port 0xDF / DAC A+D mirror, read current 12S LSB

RW $2E DAC C mirror, read current 12S right MSB

RW $2F Sets the pixel offset (two high bits) used for drawing Tilemap graphics on the
screen (see ?77)

RW $30 Sets the pixel offset (eight low bits) used for drawing Tilemap graphics on the
screen (see ?77)

RW $31 Sets the pixel offset used for drawing Tilemap graphics on the screen (see 77)

RW $32 Pixel X offset (0-255) to use when drawing LoRes Layer

RW $33 Pixel Y offset (0-191) to use when drawing LoRes Layer

RW $34 Selects sprite index 0-127 to be affected by writes to other Sprite ports (and
mirrors) (see 77)

-W $35 Writes directly into byte 1 of Sprite Attribute Upload $xx57 (see 77)

-W $36 Writes directly into byte 2 of Sprite Attribute Upload $xx57 (see 77)

-W $37 Writes directly into byte 3 of Sprite Attribute Upload $xx57 (see 77)

-W $38 Writes directly into byte 4 of Sprite Attribute Upload $xx57 (see 77)

-W $39 Writes directly into byte 5 of Sprite Attribute Upload $xx57 (see 77)

RW $40 Chooses a palette element (index) to manipulate with (see 77)

RW $41 Use to set/read 8-bit colours of the ULANext palette (see 77?)

RW $42 Specifies mask to extract ink colour from attribute cell value in ULANext mode

RW $43 Enables or disables Enhanced ULA interpretation of attribute values and toggles
active palette (see 77?)

RW $44 Sets 9-bit (2-byte) colours of the Enhanced ULA palette, or to read second byte
of colour (see 77?)

31

PORTS

RW Port Description

RW $4A 8-bit colour to be used when all layers contain transparent pixel (see 77)
RW $4B Index of transparent colour in sprite palette (see ?77)

RW $4C Index of transparent colour in Tilemap palette (see ?7?)

RW $50 Selects the 8k-bank stored in 8k-slot 0 (see 77?)

RW $51 Selects the 8k-bank stored in 8k-slot 1 (see 77?)

RW $52 Selects the 8k-bank stored in 8k-slot 2 (see 77?)

RW $53 Selects the 8k-bank stored in 8k-slot 3 (see 77?)

RW $54 Selects the 8k-bank stored in 8k-slot 4 (see 77?)

RW $55 Selects the 8k-bank stored in 8k-slot 5 (see 77?)

RW $56 Selects the 8k-bank stored in 8k-slot 6 (see 77?)

RW $57 Selects the 8k-bank stored in 8k-slot 7 (see 77?)

-W $60 Used to upload code to the Copper

RW $61 Holds low byte of Copper control bits

RW $62 Holds high byte of Copper control flags

-W $63 Used to upload code to the Copper

RW $64 Offset numbering of raster lines in copper/interrupt/active register
RW $68 Disable ULA, controls ULA mixing/blending, enable ULA+ (see 77)
RW $69 Layer2, ULA shadow, Timex $FF port

RW $6A LoRes Radastan mode

RW $6B Controls Tilemap mode (see ?7?)

RW $6C Default tile attribute for 8-bit only maps (see ?7?)

RW $6E Base address of the 40x32 or 80x32 tile map (see ?77)

RW $6F Base address of the tiles’ graphics (see 77)

RW $70 Layer 2 resolution, palette offset (see 77)

RW $71 Sets pixel offset for drawing Layer 2 graphics on the screen (see 77)
-W $75 Same as Attribute 0 Register $35 plus increments $34 (see ?7?)
-W $76 Same as Attribute 1 Register $36 plus increments $34 (see ?77)
-W $77 Same as Attribute 2 Register $37 plus increments $34 (see 77)
-W $78 Same as Attribute 3 Register $38 plus increments $34 (see ?77)
-W $79 Same as Attribute 4 Register $39 plus increments $34 (see ?7?)

32

CHAPTER 3. ZX SPECTRUM NEXT

RW Port Description

RW $7F 8-bit storage for user

RW $80 Expansion bus enable/config

RW $81 Expansion bus controls

RW $82 Enabling internal ports decoding bits 0-7 register

RW $83 Enabling internal ports decoding bits 8-15 register

RW $84 Enabling internal ports decoding bits 16-23 register

RW $85 Enabling internal ports decoding bits 24-31 register

RW $86 When expansion bus is enabled: internal ports decoding mask bits 0-7
RW $87 When expansion bus is enabled: internal ports decoding mask bits 8-15
RW $88 When expansion bus is enabled: internal ports decoding mask bits 16-23
RW $89 When expansion bus is enabled: internal ports decoding mask bits 24-31
RW $8A Monitoring internal I/O or adding external keyboard

RW $8C Enable alternate ROM or lock 48k ROM

RW $8E Control classic Spectrum memory mapping

RW $90-93 Enables GPIO pins output

RW $98-9B GPIO pins mapped to Next Register

RW $AO0 Enable Pi peripherals: UART, Pi hats, 12C, SPI

RW $A2 Pi I2S controls

RW $A3 Pi 12S clock divide in master mode

RW $A8 ESP WiFi GPIO output

RW $A9 ESP WiFi GPIO read/write

R- $BO Read Next keyboard compound keys separately (see 77)

R- $B1 Read Next keyboard compound keys separately (see 77)

RW $B2 DivMMC trap configuration

RW $B4 DivMMC trap configuration

-W $FF Turns debug LEDs on and off on TBBlue implementations that have them

33

PORTS

3.1.3 Accessing Registers
Writing to Spectrum Ports

When writing to one of the lower 256 ports, OUT (n),A instruction is used. For example to
write the value of 43 to peripheral device mapped to port $15:

LD A, 43 ; we want to write 43
0UT ($15), A ; writes value of A to port $15

To write using full 16-bit address, OUT (C),r instruction is used instead. Example of writing
a byte to serial port using UART TX $133B:

LD A, 42 ; we want to write 42
LD BC, $133B ; we want to write to port $133B
OuT (C), A

The difference between the two speed-wise is tangible: first example requires only 18 t-states
(7-+11) while second 29 (7+10+12).

Reading from Spectrum Ports

Reading also uses the same approach as on original Spectrums - for the lower 256 ports IN
A, (n) is used. For example reading a byte from port $15:

LD A, O ; perhaps not strictly required, but good idea
IN A, ($15) ; read byte from port $15 to A

Note how the accumulator A is cleared before accessing the port. With IN A, (n), the 16-bit
address is composed from A forming high byte and n low byte.

Let’s see how we can use this for reading from 16-bit ports - we have two options: we can either
use IN A, (n) or IN r, (C). Example of both, reading a byte from serial port:

LD BC, $143B ; read $143B port . LD A, $14 ; high byte
IN A, (C) ; read byte to A > IN A, ($3B) ; read byte to A

Both have the same result. The difference speed-wise is 22 t-states (10+12) vs 18 (7411). Not
by a lot, but it may add up if used frequently. However, the intent of the first code is clearer
as the port address is provided in full instead of being split between two instructions.

This example nicely demonstrates a common dilemma when programming: frequently we can
have readable but not as optimal code, or vice versa. But I also thought this was worth pointing
out to avoid possible confusion in case you will encounter different ways in someone else’s code.

34

CHAPTER 3. ZX SPECTRUM NEXT

Writing to Next registers

Writing values to Next/TBBlue registers occurs through TBBlue Register Select $243B and
TBBlue Register Access $253B ports. It’s composed from 2 steps: first we select the register
via write to port $243B, then write the value through port $253B. For example writing value
of 5 to port $16:

LD A, $16 ; register $16 1 LD A, $16 ; register $16
LD BC, $243B ; port $243B > LD BC, $243B ; port $243B
OuT (C), A s 0OUT (C), A

4
LD A, 5 ; write 5 s LD A, 5 ; write b5
LD BC, $253B ; to port $254B s INC B ; to port $253B
OuT (C), A 7 OUT (C), A

Quite involving, isn’t it? Speed-wise, first example requires 58 t-states ((7+10+12)x2) and
second 6 t-states less: 52 ((7+10412)+(74+4+12)).

The second code relies on the fact that the only difference between two port addresses is the
high byte ($24 vs $25). So given we already assigned $243B to BC, we can simply increment
B to get $253B. Again, the intent of the first example is clearer. And again, I thought it was
worth pointing out in case you will encounter both approaches and wonder...

However, we can do better. Much better, in fact, using Next NEXTREG instruction, which allows
direct writes to given registers. So above examples could simply be changed to either:

LD A, 5 ; write 5 1 NEXTREG $16, 5 ; write 5 to reg $16
NEXTREG $16, A ; to reg $16

The first example requires 24 t-states (7+17) while second 20. So less than half of that of
traditional approach. In fact, using NEXTREG is the preferred method of writing to Next registers!

Reading from Next Registers

Reading values from Next/TBBlue registers also occurs through $243B and $253B ports. Similar
to write, read is also composed from 2 steps: first select the register with port $243B, then read
the value from port $253B. For example reading a byte from port $BO:

LD A, $16 ; register $16 1 LD A, $16 ; register $16
LD BC, $243B ; port $243B 2 LD BC, $243B ; port $243B
QUT (C), A ; set port 3 ouT (C), A ; set port

4
LD BC, $253B ; port $253B 5 INC B ; port $253B
IN A, (C) ; read to A 6 IN A, (C) ; read to A

The difference is small: 51 t-states ((7+104+12)+(10412)) vs 45 ((7+10+12)+(4+12)).

Unfortunately, we don’t have faster means of reading Next registers directly as we do for writing;
there is no NEXTREG alternative for reads.

35

MEMORY MAP AND PAGING

3.2 Memory Map and Paging

ZX Spectrum Next comes with 1024K (expanded version with 2048K) of memory. But it can’t
see it all at once.

3.2.1 Banks and Slots

Due to its 16-bit address bus, Next can only address 2'® = 65.536 bytes or 64K of memory at
a time. To get access to all available memory, it’s divided into smaller chunks called “banks”.

Next supports two interchangeable memory management models. One is inherited from the
original Spectrum 128K, +2, +3 series and Pentagon clones and uses 16K banks. The other
is unique to Next and uses 8K banks. Hence, addressable 64K is also divided into 16K or 8K
“slots” into which banks are swapped in and out?.

Banks are selected by their number - first bank is 0, second 1 and so on. If you ever worked
with arrays, banks and their numbers work the same as array data and indexes. Both 16K and
8K banks start with number 0 at the same address. So if 16K bank n is selected, then the two
corresponding 8K bank numbers would be n x 2 and n x 2 + 1.

After startup, addressable 64K space is mapped like this:

Address Slots Banks Description

16K 8K | 16K 8K
$0000-$1FFF | 0 0 ROM | ROM | ROM, R/W redirect by L2, IRQ, NMI
$2000-$3FFF 1 ROM | ROM, R/W redirect by Layer 2
$4000-$5FFF | 1 2 5 10 Normal/shadow ULA screen, Tilemap
$6000-$7FFF 3 11 ULA extended attribute/graphics, Tilemap
$8000-$9FFF | 2 4 2 4 Free RAM
$A000-$BFFF 5 5 Free RAM
$C000-$DFFF | 3 6 |0 0 Free RAM
$E000-$FFFF 7 1 Free RAM

3.2.2 Default Bank Traits

First few addressable banks have certain uses and traits:

Banks
16K 8K
0 0-1 | Standard RAM, maybe used by EsxDOS. Initially mapped to $C000-$FFFF

1 2-3 | Standard RAM, contended on 128, may be used by EsxDOS, RAM disk on
NextZXOS

Description

3You may also see the term “page” used instead of “bank” (in fact, that’s why the process of swapping
banks into slots is usually called “paging”). I also noticed sometimes 64K addressable memory is referred to as
“bank”. In this book, I will keep naming consistent to avoid confusion.

36

CHAPTER 3. ZX SPECTRUM NEXT

Banks

Description
16K 8K
2 4-5 Standard RAM. Initially mapped to $8000-$BFFF
3 6-7 Standard RAM, contended on 128, may be used by EsxDOS, RAM disk on
NextZXOS
8-9 Standard RAM, contended on +2/+3, RAM disk on NextZXOS
10-11 | ULA Screen, contended except on Pentagon, cannot be used by NextBASIC
commands. Initially mapped to $4000-$7FFF
6 12-13 | Standard RAM, contended on +2/43, RAM disk on NextZXOS
7 14-15 | ULA Shadow Screen, contended except on Pentagon, NextZXOS Workspace,
cannot be used by NextBASIC commands
8 16-17 | Next RAM, Default Layer 2, NextZXOS screen and extra data, cannot be
used by NextBASIC commands
9-10 | 18-21 | Next RAM, Rest of default Layer 2
11-13 | 22-27 | Next RAM, Default Layer 2 Shadow Screen

3.2.3 Memory Map

As hinted before, not all available memory is addressable by programs. The first 256K is always
reserved for ROMs and firmware. Hence bank 0 starts at absolute address $40000:

16K bank | 8K bank | Size | Absolute Address | Description
I - - 64K | $000000-$00FFFF ZX Spectrum ROM
- - 16K $010000-$013FFF EsxDOS ROM
CAE i 16K | $014000-$017FFF | Multiface ROM
b~ i - - 16K | $018000-$01BFFF Multiface Extra ROM
Z | < |- i 16K | $01C000-$01FFFF | Multiface RAM
IR i 128K | $020000-803FFFF | DivMMC RAM
g é 0-7 0-15 128K | $040000-$05FFFF Standard 128K RAM
L:S 8-15 16-31 128K | $060000-$07FFFF Extra RAM
J 16-47 32-95 512K | $080000-$0FFFFF 1st Extra IC RAM
48-79 96-159 512K | $080000-$0FFFFF 1st Extra IC RAM
80-111 160-223 512K | $080000-$0FFFFF 2st Extra IC RAM

So when swapping in, for example:

e 16K bank 20 to slot 3 and writing 10 bytes to memory $C000 (start of 16K slot 3), we're

effectively writing to absolute memory $90000-$90009 ($40000 + 20 x 16384)

e 8K bank 30 to slot 5 and writing 10 bytes to memory $A000 (start of 8K slot 5), we're

effectively writing to absolute memory $7C000-$7C009 ($40000 + 30 x 8192)

37

MEMORY MAP AND PAGING

3.2.4 Legacy Paging Modes

As mentioned, Next inherits the memory management models from the Spectrum 128K /+2/+43
models and Pentagon clones. It’s unlikely you will use these modes for Next programs, as Next
own model is much simpler to use. They are still briefly described here though in case you will
encounter them in older programs. All legacy models use 16K slots and banks.

128K Mode

Slot 0 1 2 3
Start $0000 $4000 $8000 $C000
End $3FFF $7FFF $BFFF $FFFF

T T

ROM 0-1 BANK 0-7 on 128K
BANK 0-127 on Next

Allows selecting:

e 16K ROM to be visible in the bottom 16K slot (0) from 2 possible banks
e 16K RAM to be visible in the top 16K slot (3) from 8 possible banks (128 banks on Next)

Registers involved:

e Memory Paging Control $7FFD bit 4 selects ROM bank for slot 0

e Memory Paging Control $7FFD bits 2-0 select one of 8 RAM banks for slot 3

e Next Memory Bank Select $DFFD bits 3-0 are added as MSB to 2-0 from $7FFD to form
128 banks for slot 3 (Next specific)

If you are using the standard interrupt handler or OS routines, then any time you write to
Memory Paging Control $7FFD you should also store the value at $5B5C.

+3 Normal Mode

Slot 0 1 2 3
Start $0000 $4000 $8000 $Co000
End $3FFF $7FFF $BFFF $FFFF

T T

ROM 0-3 BANK 0-7 on 128K
BANK 0-127 on Next

Allows selecting:

e 16K ROM to be visible in the bottom 16K slot (0) from 4 possible banks
e 16K RAM to be visible in the top 16K slot (3) from 8 possible banks (128 banks on Next)

Registers involved:

38

CHAPTER 3. ZX SPECTRUM NEXT

Plus 3 Memory Paging Control $1FFD bit 2 as LSB for selecting ROM bank for slot 0
e Memory Paging Control $7FFD bit 4 forms MSB for selecting ROM bank for slot 0
e Memory Paging Control $7FFD bits 2-0 select one of 8 RAM banks for slot 3

Next Memory Bank Select $DFFD bits 3-0 are added as MSB to 2-0 from $7FFD to form
128 banks for slot 3 (Next specific)

If you are using the standard interrupt handler or OS routines, then any time you write to Plus
3 Memory Paging Control $1FFD you should also store the same value at $5B67 and every
time your write to Memory Paging Control $7FFD you should also store the value at $5B5C.

+3 All-RAM Mode

Slot 0 1 2 3
Start $0000 $4000 $8000 $C000
End $3FFF $7FFF $BFFF $FFFF
T T T T
00 = BANK O BANK 1 BANK 2 BANK 3
01 = BANK 4 BANK 5 BANK 6 BANK 7
10 = BANK 4 BANK 5 BANK 6 BANK 3
11 = BANK 4 BANK 7 BANK 6 BANK 3

!
lLo bit = bit 1 from $1DDF
Hi bit = bit 2 from $1DDF

Also called “Special Mode” or “CP/M Mode”. Allows selecting all 4 slots from limited selection
of banks as shown in the table above.

Registers involved:

e Plus 3 Memory Paging Control $1FFD bit 0 enables All-RAM (if 1) or normal mode (0)
e Plus 3 Memory Paging Control $1FFD bits 2-1 select memory configuration

If you are using the standard interrupt handler or OS routines, then any time you write to Plus
3 Memory Paging Control $1FFD you should also store the same value at $5B67.

Pentagon 512K /1024K Mode

Next also supports paging implementation from Pentagon spectrums. It’s unlikely you will ever
use it on Next, so just mentioning for completness sake. You can find more information on
Next Dev Wiki* or internet if interested.

‘https://wiki.specnext.dev/Next _Memory Bank Select

39

MEMORY MAP AND PAGING

3.2.5 Next MMU Paging Mode

Next MMU based paging mode is much more flexible in that it allows mapping 8K banks into
any 8K slot of memory available to the CPU. It’s also the simplest to use - a single instruction
assigning bank number to desired MMU slot register.

In this mode, 64K memory accessible to the CPU is divided into 8 slots called MMUOQ through
MMUY7, as shown in the diagram below. Physical memory is thus divided into 96 (or 224 on
expanded Next) 8K banks. This is the only mode that allows paging in all memory from 2048K
extended Next.

16K Slot 0 1 2 3

8K Slot 0 1 2 3 4 5 6 7
Start $0000 | $2000 | $4000 | $6000 | $8000 | $A000 | $CO00 | $E00O
End $1FFF | $3FFF | $5FFF | $7FFF | $9FFF | $BFFF | $DFFF | $FFFF

T T T T T T T 1
BANK BANK BANK BANK BANK BANK BANK BANK

0-2565 0-266 0-255 0-255 0-2656 0-255 0-255 0-255

Bank selection is set via Next registers:

¢ Memory Management Slot 0 bank $50
e Memory Management Slot 1 bank $51
e Memory Management Slot 2 bank $52
e Memory Management Slot 3 bank $53
e Memory Management Slot 4 bank $54
e Memory Management Slot 5 bank $55
e Memory Management Slot 6 bank $56
e Memory Management Slot 7 bank $57

While not absolutely required, it’s good practice to store original slot values and then restore
before exiting program or returning from subroutines.

Example of writing 10 bytes (00 01 02 03 04 05 06 07 08 09) to 8K bank 30 swapped in
to slot 5. As mentioned before, this will effectively write to absolute memory $7C000-$7C009:

NEXTREG $55, 30 ; swap bank 30 to slot 5
LD DE, $A000 ; slot 5 starts at $A000
LD A, O ; starting data to write
LD B, 10 ; number of bytes to write
next:
LD (DE), A ; write next byte
INC A ; increment source byte
INC DE ; increment destination location
DJNZ next

40

CHAPTER 3. ZX SPECTRUM NEXT

Note: Memory Management Slot 0 bank $50 and Memory Management Slot 1 bank $51
have extra “functionality”: ROM can be automatically paged in if otherwise nonexistent 8K
page $FF is set. Low or high 8K ROM bank is automatically determined based on which 8K
slot is used. This may be useful if temporarily paging RAM into the bottom 16K region and
then wanting to restore back to ROM.

3.2.6 Interaction Between Paging Modes

As mentioned, legacy and Next paging modes are interchangeable. Changing banks in one will
be reflected in the other. The most recent change always has priority. Again, keep in mind
that legacy modes use 16K banks, therefore single bank change will affect 2 8K banks.

Paging Out ROM

ROM is usually mapped to the bottom 16K slot, addresses $0000-$3FFF. This area can only be
remapped using +3 All-RAM or Next MMU-based mode. Beware though that some programs
may expect to find ROM routines at fixed addresses between $0000 and $3FFF. And if default
interrupt mode (IM 1) is set, Z80 will jump PC to $0038 expecting to find interrupt handler
there.

ULA

ULA always reads content from 16K bank 5. This is mapped to 16K slot 1 by default, addresses
$4000-$7FFF. ULA will always use bank 5, regardless of which bank is mapped to slot 1, or
which slot bank 5 is mapped to (or if it is mapped into any slot at all).

You can redirect ULA to read from 16K bank 7 instead (the “shadow” screen), using bit 3 of
Memory Paging Control $7FFD. However, you still need to map bank 7 into one of the slots
if you want to read or write to it (that’s 8K banks 14 and 15 if using MMU for paging). Read
more in ULA chapter, section ?77.

Layer 2 Paging
The bottom 16K slot can be set for write-only access for Layer 2. This can be handy as this

slot is typically mapped to ROM and thus useless to write to. There are also other Layer 2
related combinations available, read more in Layer 2 chapter, section 7?7

41

MEMORY MAP AND PAGING

3.2.7 Paging Mode Registers
+3 Memory Paging Control $1FFD

Bit Effect

7-3 Unused, use 0

2 In normal mode high bit of ROM selection. With low bit from bit 4 of $7FFD:
00 ROMO = 128K editor and menu system
01 ROMI1 = 128K syntax checker
10 ROM2 = +3DOS
11 ROM3 = 48K BASIC

In special mode: high bit of memory configuration number
1 In special mode: low bit of memory configuration number

0 Paging mode: 0 = normal, 1 = special

Memory Paging Control $7FFD

Bit Effect

7-6 Extra two bits for 16K RAM bank if in Pentagon 512K/1024K mode (see Next
Memory Bank Select $DFFD)

5 1 locks pages; cannot be unlocked until next reset on regular ZX128)

4 128K: ROM select (0 = 128K editor, 1 = 48K BASIC)
+2/43: low bit of ROM select (see +3 Memory Paging Control $1FFD above)

3 ULA layer shadow screen toggle (0 = bank 5, 1 = bank 7)
2-0 Bank number for slot 4 ($C000)

Next Memory Bank Select $DFFD

Bit Effect

7 1 to set Pentagon 512K/1024K mode
3-0 Most significant bits of the 16K RAM bank selected in Memory Paging Control $7FFD

Memory Management Slot 0-7 $50-$57

Bit Effect

7-0 Selects 8K bank stored in corresponding 8K slot

42

CHAPTER 3. ZX SPECTRUM NEXT

Memory Mapping Register $8E

Bit Effect
7 Access to bit 0 of Next Memory Bank Select $DFFD
6-4 Access to bits 2-0 of Memory Paging Control $7FFD

3 Read will always return 1
Write 1 to change RAM bank, 0 for no change to MMUG6,7, $7FFD and $DFFD

0 for normal paging mode, 1 for special all-RAM mode
Access to bit 2 of +3 Memory Paging Control $1FFD

0 If bit 2 = 0 (normal mode): bit 4 of Memory Paging Control $7FFD
If bit 2 = 1 (special mode): bit 1 of +3 Memory Paging Control $1FFD

Acts as a shortcut for reading and writing +3 Memory Paging Control $1FFD, Memory
Paging Control $7FFD and Next Memory Bank Select $DFFD all at once. Mainly to simplify
classic Spectrum memory mapping. Though, as mentioned, Next specific programs should
prefer MMU based memory mapping.

43

PALETTE

3.3 Palette

Next greatly enhances ZX Spectrum video capabilities by offering several new ways to draw
graphics on a screen. We'll see how to program each in later chapters, but let’s check common
behaviour first - colour management.

3.3.1 Palette Selection

To draw a pixel on a screen, we need to set its colour as data in memory. There are different
approaches to how this data is defined. Next shares implementation to other 8-bit computers
of the era - all possible colours are stored together in a palette, as an array of RGB values,
and each pixel is simply an index into this array. This approach requires less memory and
allows creating efficient effects such as fade to/from black, transitions from day to night, water
animations etc.

Contrary to most computers of the era that only had predefined palettes, Next allows changing
all colours. Furthermore, each layer has not one but two palettes, each of which can be changed
independently. Of course, only one of two can be active at any given time for each mode. The
other can be initialized with alternate colours and can be quickly activated to achieve colour
animation effects. Active palette is set with Enhanced ULA Control Register $43 for ULA,
Layer 2 and Sprites and Tilemap Control Register $6B for Tilemap.

3.3.2 Palette Editing

Data for each pixel for most layers and modes is 1 byte long, meaning each palette can have
up to 256 colours.

All palettes are initialized with default colours, so they are usable out of the box. But it’s also
possible to change individual colours. Regardless of the palette, the procedure to read or write
colours is:

1. Enhanced ULA Control Register $43 selects palette which colours you want to edit
2. Palette Index Register $40 selects colour index that will be read or written

3. Palette Value Register $41 or Enhanced ULA Palette Extension $44 reads or writes
data for selected colour

When writing colours, we can chose to automatically increment colour indexes after each write.
Bit 7 of Enhanced ULA Control Register $43 is used for that purpose. This works the same
for both write registers ($41 and $44). Colour RGB values can either be 8-bit RRRGGGBB, or
9-bit RRRGGGBBB values. Use Palette Value Register $41 for 8-bit and Enhanced ULA Palette
Extension $44 for 9-bit.

Note: Enhanced ULA Control Register $43 has two roles when working with palettes - it
selects the active palette for display (out of two available - only for ULA, Layer 2 and Sprites)
and selects palette for editing (for all layers, including Tilemap). Therefore care needs to be
taken when updating colour entries to avoid accidentally changing the active palette for display

44

CHAPTER 3. ZX SPECTRUM NEXT

at the same time. Depending on our program, we may first need to read the value and then only
change bits affecting the palette for editing to ensure the rest of the data remains unaffected.

3.3.3 8 Bit Colours

8-bit colours are stored as RRRGGGBB values with 3 bits per red and green and 2 bits per blue
component. Each colour is therefore stored as a single byte. Palette Value Register $41 is
used to read or write the value.

Here’s a reusable subroutine for copying B number of colours stored as a contiguous block in
memory addressed by HL register, starting at the currently selected colour index:

Copy8BitPalette:
LD A, (HL) ; Load RRRGGGBB into A
INC HL ; Increment to next colour entry
NEXTREG $41, A ; Send colour data to Next HW
DJINZ Copy8BitPalette ; Repeat until B=0

To use the subroutine, we’d do something like:

NEXTREG $43, %00010000 ; Auto increment, L2 first palette for read/write

NEXTREG $40, O ; Start copying into index O
LD HL, palette ; Address to copy RRRGGGBB values from
LD B, 255 ; Copy 255 colours

CALL Copy8BitPalette

3.3.4 9 Bit Colours

With 9 bits per colour, each RGB component uses full 3 bits, thus greatly increasing the
available colour gamut. However, each colour needs 2 bytes in memory instead of 1. To read or
write we use Enhanced ULA Palette Extension $44 register instead of $41. It works similarly
to $41 except that each colour requires two writes: first one stores RRRGGGBB part and second
least significant bit of blue component. Subroutine for copying 9-bit colours:

Copy9BitPalette:
LD A, (HL) ; Load RRRGGGBB into A
INC HL ; Increment to next byte
NEXTREG $44, A ; Send colour data to Next HW
LD A, (HL) ; Load LSB of B into A
INC HL ; Increment to next colour entry
NEXTREG $44, A ; Send colour data to Next HW and increment index
DJINZ Copy9BitPalette ; Repeat until B=0

Note: subroutine requires that colours are stored in 2 bytes with first containing RRRGGGBB part
and second least significant bit of blue. Which is how typically drawing programs store a 9-bit
palette anyways. The calling subroutine is exactly the same as for the 8-bit colours above.

45

PALETTE

3.3.5 Palette Registers
Palette Index Register $40

Bit Effect
7-0 Reads or writes palette colour index to be manipulated

Writing an index 0-255 associates it with colour set through Palette Value Register $41
or Enhanced ULA Palette Extension $44 of currently selected pallette in Enhanced ULA
Control Register $43. Write also resets value of Enhanced ULA Palette Extension $44 so
next write will occur for first colour of the palette.

While Tilemap, Layer 2 and Sprites palettes use all 256 distinct colours (with some caveats, as
described in specific chapters), ULA modes work like this:

Classic ULA
Index Colours
0-7 Ink
8-15 Bright ink
16-23 Paper
24-31 Bright paper

Border is taken from paper colours.

ULA+
Index Colours
0-64 Ink

Paper and border are taken from Transparency Colour Fallback Register $4A.

ULANext normal mode

Index Colours
0-127 Ink (only a subset)
128-255 Paper (only a subset)

Border is taken from paper colours. The number of active indices depends on the number
of attribute bits assigned to ink and paper out of the attribute byte by Enhanced ULA
Ink Colour Mask $42.

ULANext full-ink mode

Index Colours
0-255 Ink

Paper and border are taken from Transparency Colour Fallback Register $4A.

46

CHAPTER 3. ZX SPECTRUM NEXT

Palette Value Register $41

Bit Effect
7-0 Reads or writes 8-bit colour data

Format is:

7 6 5 4 3 2 1 0
Ry | R | Ry| Gy | Gi | Gy | Ba | By
Red Green Blue

Least significant bit of blue is set to OR between By and Bj.

Writing the value will automatically increment index in Palette Index Register $40, if auto-
increment is enabled in Enhanced ULA Control Register $43. Read doesn’t auto-increment
index.

Enhanced ULA Ink Colour Mask $42

Bit Effect

7-0 The number for last ink colour entry in the palette. Only used when ULANext mode
is enabled (see Enhanced ULA Control Register $43). Only the following values are
allowed, harware behavior is unpredictable for other values:

1 Ink and paper only use 1 colour each on indices 0 and 128 respectively

3 Ink and paper use 4 colours each, on indices 0-3 and 128-131

7 Ink and paper use 8 colours each, on indices 0-7 and 128-135

15 Ink and paper use 16 colours each, on indices 0-15 and 128-143

31 Ink and paper use 32 colours each, on indices 0-31 and 128-159

63 Ink and paper use 64 colours each, on indices 0-63 and 128-191

127 Ink and paper use 128 colours each, on indices 0-127 and 128-255

255 Enables full-ink colour mode where all indices are ink. In this mode paper and
border are taken from Transparency Colour Fallback Register $4A

Default value is 7 for core 3.0 and later, 15 for older cores.

47

PALETTE

Enhanced ULA Control Register $43

Bit Effect
7 1 to disable palette index auto-increment, 0 to enable

6-4 Selects palette for read or write
000 ULA first palette
100 ULA second palette
001 Layer 2 first palette
101 Layer 2 second palette
010 Sprites first palette
110 Sprites second palette
011 Tilemap first palette
111 Tilemap second palette

Selects active Sprites palette (0 = first palette, 1 = second palette)
Selects active Layer 2 palette (0 = first palette, 1 = second palette)
Selects active ULA palette (0 = first palette, 1 = second palette)
Enables ULANext mode if 1 (0 after reset)

SO = N W

Write will also reset the index of Enhanced ULA Palette Extension $44 so next write there
will be considered as first byte of first colour.

Enhanced ULA Palette Extension $44

Bit Effect
7-0 Reads or writes 9-bit colour definition

Two consequtive writes are needed:

First write: Second write:
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Ry | Ri| Ry| Go| G1| Go| By | By P, - By
Red Green Blue L2 Reserved, set to 0 B

Bit 7 of the second write must be 0 except for Layer 2 palettes where it specifies colour priority.
If set to 1, then the colour will always be on top, above all other layers, regardless of priority
set with Sprite and Layers System Register $15. So if you need exactly the same colour with
priority and non-priority, you will need to set the same data twice, to different indexes, once
with priority bit 1 and then with 0.

After second write palette colour index in Palette Index Register $40 is automatically increment,
if auto-increment is enabled in Enhanced ULA Control Register $43.

Note: reading will always return the second byte of the colour (least significant bit of blue) and
will not auto-increment index. You can read RRRGGGBB part with Palette Value Register $41.

48

CHAPTER 3. ZX SPECTRUM NEXT

Transparency Colour Fallback Register $4A

Bit Effect
7-0 8-bit colour to be used when all layers contain transparent pixel. Format is RRRGGGBB

This colour is also used for paper and border when ULANext full-ink mode is enabled - see
Enhanced ULA Ink Colour Mask $42.

49

ULA LAYER

3.4 ULA Layer

Original ZX Spectrum didn’t have a dedicated graphics chip. To keep the price as low as
possible, screen rendering was performed by ULA (“Uncommitted Logic Array”) chip.

7ZX Spectrum Next inherits ULA mode. The resolution of the screen in this mode is 256 x 192
pixels. If we translate this to 8x8 pixels characters, it gives us 32 character columns in 24
character rows.

ULA always reads from 16K bank 5 which is assigned to the second 16K slot at addresses $4000-
$7FFF by default. Similar to the memory configuration of other contemporary computers, pixel
memory is separate from attributes/colour memory. If using default memory configuration:

ROM RAM
16K 16K 16K | 16K
Pixels Attributes (free)
$4000-$57FF | $5800-$5AFF = $5B00-$7FFF

3.4.1 Pixel Memory

Each screen pixel is represented by a single bit, meaning 1 byte holds 8 screen pixels. So,
for each line of 256 pixels, 32 bytes are needed. However, for sake of efficiency, the original
Spectrum optimized screen memory layout for speed but made it inconvenient for programming.

Pixel memory is not linear but is instead divided to fill character rows line by line. The
first 32 bytes of memory represent the first line of the first character row, followed by 32
bytes representing the first line of the second character row and so on until the first line of 8
character rows is filled. Then next 32 bytes of screen memory represent the second line of the
first character row, again followed by the second line of the second character row, until all 8
character rows are covered:

Addr. Ln. Ch. Addr. Ln. Ch. Addr. Ln. Ch.
$4000 0 0/0 $4100 1 0/1 $4200 2 0/2
$4020 8 1/0 $4120 9 1/1 $4220 10 1/2
$4040 16 2/0 $4140 17 2/1 $4240 18 2/2
$4060 24 3/0 $4160 25 3/1 $4260 26 3/2
$4080 32 4/0 $4180 32 4/1 $4280 33 4/2
$40A0 40 5/0 $41A0 41 5/1 $4200 42 5/2
$40C0 48 6/0 $41C0 49 6/1 $42C0 50 6/2
$40E0 56 7/0 $41E0 57 7/1 $42E0 58 7/2

Ln. Screen line (0-191) Ch. Character <row>/<line> (0-23/0-7)

But this is not the end of the peculiarities of Spectrum ULA mode. If you attempt to fill the
screen memory byte by byte, you’ll realize the top third of the screen fills in first, then middle
third and lastly bottom third. The reason is, ULA mode divides the screen into 3 banks. Each
bank covers 8 character rows, so 8x8x32 or 2048 bytes:

50

10

11

12

13

14

CHAPTER 3. ZX SPECTRUM NEXT

Memory Range Screen Lines Char. Rows

$4000 - $47FF 0-63 0-8
$4800 - $4FFF 64 - 127 9-16
$5000 - $57FF 128 - 191 17 - 23

In fact, to calculate the address of memory for any given (x,y) coordinate, we’d need to prepare
a 16-bit value like this:

High Byte Low Byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

110 | Y7 | Y | Yo | V1| Yo |Ys | Yy |Ys | X7 | Xg| X5 | Xy| X3

1 0 Y X

As you can see, X is straightforward; we simply need to take the upper 5 bits and fill them into
the lower 5 bits of a 16-bit register pair. Y coordinate requires all 8 bits written into bits 12-5 of
16-bit register pair. However, notice how individual bits are scrambled. It makes incrementing
address for next character row simple operation of INC H (assuming HL stores the address of
the previous row), which is likely one of the reasons for such implementation. But imagine for a
second how complex a Z80 program would need to be to handle all of this. Sure, nothing couple
shifts and masking operations couldn’t handle but still, lots of wasted CPU cycles. However,
on ZX Spectrum Next we have 3 new instructions that take care of all of the complexity for us:

e PIXELAD calculates the address of a pixel with coordinates from DE register pair where D
is Y and E is X coordinate and stores the memory location address into HL register pair
for ready consumption

e PIXELDN takes the address of a pixel in HL and updates it to point to the same X coordinate
but one screen line down

e SETAE takes X coordinate from E register and prepares mask in register A for reading or
writing to ULA screen

Furthermore; each instruction only uses 8 t-states, which is far less than the corresponding Z80
assembly program would require. Somewhat naive program for drawing vertical line write from
the pixel at coordinate (16,32) to (16,50):

LD DE, $1020 5 Y=16, X=32

PIXELAD ; HL=address of pixel (E,D)
loop:

SETAE ; A=pixel mask

OR (HL) ; we’ll write the pixel

LD (HL), A ; actually write the pixel

INC D ; Y=Y+1

LD A, D ; copy new Y coordinate to A

Cp 51 ; are we at 51 already?

RET NC ; yes, return

PIXELDN ; no, update HL to next line

JR loop ; continue with next pixel

51

ULA LAYER

Note: because we're updating our Y coordinate in D register within the loop, we could also use
PIXELAD instead of PIXELDN in line 13. Both instructions require 8 T states for execution, so
there’s no difference performance-wise.

If we instead wanted to check if the pixel at the given coordinate is set or not, we would use
AND (HL) instead of OR (HL). For example:

LD DE, $1020
PIXELAD
SETAE

AND (HL)

RET Z

’

: Y=16, X=32

HL=address of pixel (E,D)
A=pixel mask

we’ll read the pixel

exit if pixel is not set

3.4.2 Attributes Memory

Now that we know how to draw individual pixels, it’s time to handle colour. Memory wise, it’s
stored immediately after pixel RAM, at memory locations $5800 - $5AFF. Each byte represents
colour and attributes for 8 x8 pixel block on the screen. Byte contents are as follows:

7 6 5 4 3 2 1 0
F B PQ P1 P() IQ Il IO
F | B Paper Ink

Bit 7: 1 to enable flashing, 0 to disables it

Bit 6: 1 to enable bright colours, 0 for normal colours

Bits 5-3: paper colour 0-7

Bits 2-0: ink colour 0-7

Colour value 0-7 corresponds to:

Value Binary

0

Y O WN -

7

000
001
010
011
100
101
110
111

Colour

Black

Blue
Red

Magenta

Green

Cyan

Yellow

Gray

Bright

Black

Bright blue
Bright red
Bright magenta
Bright green
Bright cyan
Bright yellow
White

Spectrum only requires 768 bytes to configure colour and attributes for the whole screen. And
memory is contiguous so it’s simple to manage. However, it comes at expense of restricting to
only 2 colours per character block - the reason for the (in)famous colour clash.

Note: on Next, default ULA colours can be changed, see Palette chapter 7?7 for details.

52

10

11

12

13

14

15

16

CHAPTER 3. ZX SPECTRUM NEXT

3.4.3 Border

Next inherits Spectrum border colour handling through ULA Control Port $xxFE. The bottom
3 bits are used to specify one of 8 possible colours (see table on the previous page for full list).
Example:

LD A, 1 ; Select blue colour
OUT ($FE), A ; Set border colour from A

Note: border colour is set the same way regardless of graphics mode used. However, some Layer
2 modes and Tileset may partially or fully cover the border, effectively making it invisible to
the user.

3.4.4 Shadow Screen

As mentioned, ULA uses 16K bank 5 by default to determine what to show on the screen.
However, it’s possible to change this to bank 7 instead by using bit 3 of Memory Paging
Control $7FFD. Bank 7 mode is called the “shadow” screen. It gives us two separate memory
spaces for rendering ULA data and means for quickly swapping between them. It allows always
drawing into inactive bank and only swapping it in when ready thus help eliminating flicker.

Note: Memory Paging Control $7FFD only controls which of the two possible banks is being
used by ULA, but it doesn’t map the bank into any of the memory slots. This needs to be
done by one of the paging modes as described in the Memory Map and Paging chapter, section
?77?7. Using MMU, we could do something like:

LD HL, $5800 ; we’ll be swapping colours

NEXTREG $52, 10 ; swap first half of 16K bank 5 to 8K slot 2
LD A, 00000000 ; paper=black, ink=black

LD (HL), A ; write data to screen (immediately visible)
NEXTREG $52, 14 ; swap first half of 16K bank 7 to 8K slot 2
LD A, 700000101 ; paper=black, ink=cyan

LD (HL), A ; write to 16K bank 7 (not visible)

LD BC, $7FFD ; prepare port for changing layers

LD A, %00001000 ; activate shadow layer

OuT (C), A ; top left char now has black background

LD A, %00000000 ; deactivate shadow layer

QUT (C), A ; top left char now has cyan background

Remember: 16K bank 7 corresponds to 8K banks 14 and 15. And because pixel and attributes
combined fit within single 8K, only single bank needs to be swapped in.

53

ULA LAYER

3.4.5 Enhanced ULA Modes

7ZX Spectrum Next also supports several enhanced ULA modes like Timex Sinclair Double
Buffering, Timex Sinclair Hi-Res and Hi-Colour, etc. However, with the presence of Layer 2
and Tilemap modes, it’s unlikely these will be used when programming new software on Next.
Therefore they are not described here. If interested, read more on:

https://wiki.specnext.dev/Video Modes

3.4.6 ULA Registers

ULA Control Port $xxFE

Bit Effect

7-5 Reserved, use 0

4 EAR output (connected to internal speaker)
3 MIC output (saving to tape via audio jack)
2-0 Border colour

Note: when reading this port with certain high byte values will read keyboard status. See
section 77 for details.

Memory Paging Control $7FFD

See description under Memory Map and Paging chapter, section ?7.

Palette Index Register $40

Palette Value Register $41

Enhanced ULA Ink Colour Mask $42
Enhanced ULA Control Register $43
Enhanced ULA Palette Extension $44
Transparency Colour Fallback Register $4A

See description under Palette chapter, section ?7.

54

CHAPTER 3. ZX SPECTRUM NEXT

This page intentionally left empty

55

LAYER 2

3.5 Layer 2

As we saw in the previous section, drawing with ULA graphics is much simplified on Next. But
it can’t eliminate the colour clash. Well, not with ULA mode at least. However, Next brings
a couple of brand new graphic modes to the table, hidden behind a somewhat casual name
“Layer 2”. But don’t let its name deceive you; Layer 2 raises Next graphics capabilities to a
whole new level!

Layer 2 may appear behind or above the ULA layer. It supports different resolutions with every
pixel coloured independently and memory organized sequentially, line by line, pixel by pixel.
Consequently, Layer 2 requires more memory compared to ULA; each mode needs multiple 16K
banks. But of course, Next has far more memory than the original Speccy ever did!

Resolution Colours BPP Memory Organization
256x192 256 8 48K, 3 horizontal banks of 64 lines
320 %256 256 8 80K, 5 vertical banks of 64 columns®
640 x 256 16 4 80K, 5 vertical banks of 128 columns®

3.5.1 Initialization

Drawing on Layer 2 is much simpler than using ULA mode. But in contrast with ULA, which
is always “on”, Layer 2 needs to be explicitly enabled. This is done by setting bit 1 of Layer
2 Access Port $123B.

By default, Layer 2 will use 256 x192 with 256 colours, supported across all Next core versions.
You can select another resolution with Layer 2 Control Register $70. 320x256 and 640x 256
modes also require setting up clip window correctly with Clip Window Layer 2 Register $18.

3.5.2 Paging

After Layer 2 is enabled, we can start writing into memory banks. As mentioned above, Layer
2 requires 3-5 contiguous 16K banks. While Next initializes default configuration during boot,
it’s nonetheless a good idea to set it up manually to ensure our code will work across all devices.
Layer 2 Ram Page Register $12 selects the bank number where Layer 2 video memory begins.
Note it’s a good idea to store the original bank values so we can restore them afterwards.

All supported modes can be used for paging, as described in section ??7, by swapping in bank
numbers to 16K slot at $C000. However, the simplest and most versatile is MMU mode; MMUG6
and MMUT registers correspond to 2 8K slots starting at $C000.

5Core 3.0.6+ only

56

CHAPTER 3. ZX SPECTRUM NEXT

3.5.3 Drawing

In general, drawing pixels requires the programmer to:

e Determine and select bank to write to
e (Calculate address of the pixel within the bank
e Write byte with colour data

All Layer 2 modes use the same approach when drawing pixels. Each pixel uses one byte (except
640x 320 where each byte contains data for 2 pixels). The value is simply an index into the
palette entries list. Similar to other layers, Layer 2 also has two palettes, of which only one
can be active at any given time. Enhanced ULA Control Register $43 is used to select active
palette. See Palette chapter 77 for details on how to program palettes.

See specific modes in the following pages for examples of writing pixel data.

3.5.4 Effects

Sprite and Layers System Register $15 can be used to change Layer 2 priority, effectively
moving Layer 2 above or below other layers - see Tilemap chapter, section 7?7 for details.

We can even be more specific and only prioritize specific colours, so only pixels using those
colours will appear on top while other pixels below other layers. This way we can achieve a
simple depth effect. Per-pixel priority is available when writing a custom palette with Enhanced
ULA Palette Extension $44 (9-bit colours). See description under Palette chapter, section 77
for details on how to program palette.

We can also use both Layer 2 palettes to achieve simple effects. For example, certain colours
can be marked with the priority flag on one palette but not on the other. When swapping
palettes, pixels drawn with these colours would appear on top or below other layers. Another
simple effect using both palettes could be colour animation, though it can’t be very smooth
with only two states.

Global Transparency Register $14 can be used to alter the transparent colour of Layer 2.
This same register also affects ULA, LoRes and 1-bit (“text mode”) tilemap.

Scrolling effects can be achieved by writing pixel offsets to Layer 2 X Offset Register $16,
Layer 2 X Offset MSB Register $71 and Layer 2 Y Offset Register $17.

57

© ~ o [} » w N =

= = = = =
) N S)

-
o

16

17

18

LAYER 2

3.5.5 256x192 256 Colour Mode

3 horizontal banks: S8BPP:
0 o 255
0 16K BANK 0 SK BANK 0 7 | 6 5 4 | 3 9 1 0
0...31
I Is | I I I I I I
: SK BANK 1 7 6 5 4 .3 2 1 0
63 39 63 Colour index
64 | 16K BANK 1 8K BANK 2 Banking Setup:
64 ...95
SK BANK 3 15 14 13 12-8 7-0
127 96 ...127 Y X
128 | 16K BANK 2 8K BANK 4 16K Ys_o X
128 ...159
8K BANK 5 8K Yaro X
191 160 ...191

This mode is the closest to ULA, resolution wise, so is perhaps the simplest to grasp. It’s
also supported across all Next core versions. Pixels are laid out from left to right and top to
bottom. Each pixel uses one byte that represents an 8-bit index into the palette. 3 16K banks
are needed to cover the whole screen, each holding data for 64 lines. Or, if using 8K, 6 banks,
32 lines each. Combined, colour data requires 48K of memory.

Each (x,y) coordinate pair requires 16-bits. If the upper byte is used for Y and lower for the X
coordinate, together they will form exact memory location offset from the top of the first bank.
But to account for bank swapping; for 16K banks, the most significant 2 bits of Y correspond
to bank number and for 8K banks, top 3 bits. The rest of Y + X is memory location within
the bank.

Example of filling the screen with a vertical rainbow:

START_16K_BANK EQU 9
START_8K_BANK EQU START_16K_BANKx*2

; Enable Layer 2

LD BC, $123B
LD A, 2
0UT (C), A

; Setup starting Layer2 16K bank
NEXTREG $12, START_16K_BANK

LD D, O ; D=Y, start at top of the screen
nextY:

; Calculate bank number and swap it in

LD A, D ; Copy current Y to A

AND %11100000 ; 32100000 (3MSB = bank number)

RLCA ; 21000003

58

19

20

21

22

23

24

25

26

27

28

29

30

31

32

36

37

38

39

40

41

42

43

44

45

CHAPTER 3. ZX SPECTRUM NEXT

RLCA ; 10000032

RLCA ; 00000321

ADD A, START_8K_BANK ; A=bank number to swap in
NEXTREG $56, A ; Swap bank

; Convert DE (yx) to screen memory location starting at $C000

PUSH DE ; (DE) will be changed to bank offset
LD A, D ; Copy current Y to A

AND %00011111 ; Discard bank number

OR $CO ; Screen starts at $C000

LD D, A ; D=high byte for $CO000 screen memory

; Loop X through 0..255; we don’t have to deal with bank swapping
; here because it only occurs when changing Y

LD E, O
nextX:
LD A, E ; A=current X
LD (DE), A ; Use X as colour index
INC E ; Increment to next X
JR NZ, nextX ; Repeat until E rolls over

; Continue with next line or exit

POP DE ; Restore DE to coordinates

INC D ; Increment to next Y

LD A, D ; A=current Y

CP 192 ; Did we just complete last line?
JP C, nextY ; No, continue with next linee

Worth noting: MMU page 6 (next register $56) covers memory $C000 - $DFFF. As we swap
different 8K banks there, we're effectively changing 8K banks that are readable and writable
at those memory addresses. That’s why we OR $CO in line 24; we need to convert zero based
address to $C000 based. See section 77 for details on MMU paging mode.

We don’t have to handle bank swapping on every iteration; once per 32 rows would do for this
example. But the code is more versatile this way and could be easily converted into a reusable
pixel setting routine.

59

© N~ o [l IS w N =

LAYER 2

3.5.6 320x256 256 Colour Mode

5 vertical banks: S8BPP:
0 319
=N — ™ ™ ~ 716 | 5| 4| 3| 2 1 0
= |2 B2 |2 |E AT AR
Z z z Z Z 7 6 5 4 .3 2 1 0
2 M M m m Colour index
e e e el e
= = = =t =t Banking Setup:
(@) — N o <t O Ne) I~ o0 D
§ é % % % é E é é é 16 15 14 13 12-8 7-0
S EEEEHEEE NS T v
o 16K Xs5_0 Y
WD [MM XM XXX XXX
N o0 o0 o0 o0 o0 o0 o0 o0 o0 0 8K X4_0 Y

16K bank contains 64 columns
8K bank contains 32 columns

320%x256 mode is only available on Next core 3.0.6 or later. Pixels are laid out from top to
bottom and left to right. Each pixel uses one byte that represents an 8-bit index into the
palette. To cover the whole screen, 5 16K banks of 64 columns or 10 8K banks of 32 columns
are needed. Together colour data requires 80K of memory.

In contrast with 256x192, this mode allows drawing to the whole screen, including border. In
fact, you can think of it as the regular 256 x192 mode with additional 32 pixel border around
(32 + 256 + 32 = 320 and 32 + 192 + 32 = 256).

Addressing is more complicated though. As we need 9 bits for X and 8 for Y, we can’t address
all screen pixels with single 16-bit register pair. But we can use 16-bit register pair to address
all pixels within each bank. From this perspective, the setup is similar to 256 x192 mode,
except that X and Y are reversed: if the upper byte is used for X and lower for Y, then most
significant 2 bits of 16-bit register pair represent lower 2 bits of 16K bank number. And for 8K
banks, the most significant 3 bits correspond to the lower 3 bits of 8K bank number. In either
case, the most significant bit of the bank number arrives from the 9th bit of the X coordinate
(Xs in the table above). The rest of the X + Y is memory location within the bank.

To use this mode, we must explicitly select it with Layer 2 Control Register $70. We must
also not forget to set clip window correctly with Clip Window Layer 2 Register $18 and Clip/
Window Control Register $1C, as demonstrated in example below:

START_16K_BANK EQU 9
START_8K_BANK EQU START_16K_BANKx*2

RESOLUTION_X EQU 320
RESOLUTION_Y EQU 256

BANK_8K_SIZE EQU 8192

NUM_BANKS EQU RESOLUTION_X * RESOLUTION_Y / BANK_8K_SIZE
BANK_X EQU BANK_8K_SIZE / RESOLUTION_Y

60

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

CHAPTER 3. ZX SPECTRUM NEXT

; Enable Layer 2

LD BC, $123B
LD A, 2
0uT (C), A

; Setup starting Layer2

16K bank

NEXTREG $12, START_16K_BANK

NEXTREG $70, %00010000

; Setup window clip for
NEXTREG $1C, 1
NEXTREG $18, O

; 320x256 256 colour mode

320x256 resolution
; Reset Layer 2 clip window reg index
; X1; X2 next line

NEXTREG $18, RESOLUTION.X / 2 - 1

NEXTREG $18, 0

; Y1; Y2 next line

NEXTREG $18, RESOLUTION_Y - 1

LD B, START_8K_BANK
LD H, O

nextBank:
; Swap to next bank, exit once all 5 are done

LD A, B
NEXTREG $56, A

; Fill in current bank
LD DE, $C000

nextY:

61

; Fill in 256 pixels of
LD A, H

LD (DE), A

INC E

JR NZ, nextY

; Prepare for next line
INC H

INC D

LD A, D

AND 700111111

CP BANK_X

JP NZ, nextY

; Prepare for next bank
INC B
LD A, B

; Bank number
; Colour index

; Copy current bank number to A
; Switch to bank

; Prepare starting address

current line

; Copy colour index to A

; Write colour index into memory

; Increment Y

; Continue with next Y until we wrap to next X

until bank is full

; Increment colour

; Increment X

; Copy X to A

; Clear $CO to get pure X coordinate
; Did we reach next bank?

; No, continue with next Y

; Increment to next bank
; Copy bank to A

CP START_8K_BANK+NUM_BANKS; Did we fill last bank?

JP NZ, nextBank

; No, proceed with next bank

© © ~ o (&) »ow N =

-
o

LAYER 2

3.5.7 640x256 16 Colour Mode

5 vertical banks: 4BPP:
0 639
ol < — D o = 7.6 | 543|210
= |2 |2 |E B L L\ L\ o\ Lo 5o
= < % 2 4 3 2 1 0 3 2 1 0
M M M m m Colour 1 Colour 2
N e e N el _
= e = =t © Banking Setup:
(@) — (&N o <t 0O Ne) I~ [00] (@)
% % % % % % % E E % 16 15 14 13 12-8 7-0
SZ 22D LD D L2 < Xg x 2 X709 %2 Y
- MMM MM MA M A MM 16K X: o x 2 Y
Yol Ioll ol ol I ol I ol I ol I ol ol ol e
N o0 (e 0] (e.0] o0 o0 o0 o0 o0 o0 o] 8K X4_0X2 Y

16K bank contains 128 columns
8K bank contains 64 columns

640 %256 mode is very similar to 320x256, except that each byte represents 2 colours instead
of 1. It’s also available on Next core 3.0.6 or later only. Pixels are laid out from top to bottom
and left to right. Each pixel takes 4 bits, so each byte contains data for 2 pixels. To cover the
whole screen, 5 16K banks of 128 columns or 10 8K banks of 64 columns are needed. Together
colour data requires 80K of memory. Similar to 320x256, this mode also covers the whole
screen, including the border.

Addressing wise, this mode is the same as 230x256. Using 16-bit register pair we can’t address
all pixels on the screen, but we can address all pixels within each bank. Again, assuming upper
byte of 16-bit register pair is used for X and lower for Y and using 9th bit of X coordinate (bit
Xs in the table above) as the most significant bit of bank number, then most significant 2 bits
of 16-bit register pair represent lower 2 bits of 16K bank number. And for 8K banks, the most
significant 3 bits correspond to the lower 3 bits of 8K bank number. The rest of the X 4+ Y is
memory location within the bank. Don’t forget: each colour byte represents 2 screen pixels, so
the memory X coordinate (as described above) needs to be multiplied by 2 to convert to screen
X coordinate.

To use this mode, we must explicitly select it with Layer 2 Control Register $70. We must
also not forget to set clip window correctly with Clip Window Layer 2 Register $18 and Clip/
Window Control Register $1C, as demonstrated in example below:

START_16K_BANK EQU 9
START_8K_BANK EQU START_16K_BANKx*2

RESOLUTION_X EQU 640
RESOLUTION_Y EQU 256

BANK_8K_SIZE EQU 8192

NUM_BANKS EQU RESOLUTION_X * RESOLUTION_Y / BANK_8K_SIZE / 2
BANK_X EQU BANK_8K_SIZE / RESOLUTION_Y

62

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

CHAPTER 3. ZX SPECTRUM NEXT

; Enable Layer 2

LD BC, $123B
LD A, 2
OUT (C), A

; Setup starting Layer2

16K bank

NEXTREG $12, START_16K_BANK

NEXTREG $70, %00100000

NEXTREG $1C, 1
NEXTREG $18, 0

; 640x256 16 colour mode

; Reset Layer 2 clip window reg index

NEXTREG $18, RESOLUTION.X / 4 - 1

NEXTREG $18, O

NEXTREG $18, RESOLUTION_Y - 1

LD B, START_8K_BANK
LD H, O

nextBank:
; Swap to next bank, exit once all 5 are done

LD A, B
NEXTREG $56, A

; Fill in current bank
LD DE, $C000

nextY:

63

; Fill in 256 pixels of
LD A, H

LD (DE), A

INC E

JR NZ, nextY

; Prepare for next line
INC H

INC D

LD A, D

AND 7%00111111

CP BANK_X

JP NZ, nextY

; Prepare for next bank
INC B
LD A, B

; Bank number
; Colour index for 2 pixels

; Copy current bank number to A
; Switch to bank

; Prepare starting address

current line

; Copy colour indexes for 2 pixels to A

; Write colour indexes into memory

; Increment Y

; Continue with next Y until we wrap to next X

until bank is full

; Increment colour index for both colours
; Increment X

; Copy X to A

; Clear $CO to get pure X coordinate

; Did we reach next bank?

; No, continue with next Y

; Increment to next bank
; Copy bank to A

CP START_8K_BANK+NUM_BANKS; Did we fill last bank?

JP NZ, nextBank

; No, proceed with next bank

LAYER 2

3.5.8 Layer 2 Registers
Layer 2 Access Port $123B

Bit Effect

7-6 Video RAM bank select
00 First 16K of layer 2 in the bottom 16K
01 Second 16K of layer 2 in the bottom 16K
10 Third 16K of layer 2 in the bottom 16K
11 First 48K of layer 2 in the bottom 48K (core 3.0+)

5 Reserved, use 0
4 0 (see below)

3 Use Shadow Layer 2 for paging
0 Map Layer 2 RAM Page Register $12
1 Map Layer 2 RAM Shadow Page $13

2 Enable Layer 2 read-only paging

1 Layer 2 visible, see Layer 2 RAM Page Register $12
Since core 3.0 this bit has mirror in Display Control 1 Register $69

0 Enable Layer 2 write-only paging

Since core 3.0.7, write with bit 4 set was also added:

Bit Effect
7-5 Reserved, use 0
4 1

3 Reserved, use 0

2-0 16K bank relative offset (+0..47) applied to Layer 2 memory mapping

Layer 2 Ram Page Register $12

Bit Effect
7 Reserved, must be 0
6-0 Starting 16K bank of Layer 2

Default 256 x 192 mode requires 3 16K banks while new, 320x256 and 640x 256 modes require
5 16K banks. Banks need to be contiguous in memory, so here we only specify the first one.
Valid bank numbers are therefore 0 - 45 (109 for 2MB RAM models) for standard mode and 0
- 43 (107 for 2MB RAM models) for new modes.

Note: this register uses 16K bank numbers. If you're using 8K banks, you have to multiply this
value by 2. For example, 16K bank 9 corresponds to 8K banks 18 and 19.

64

CHAPTER 3. ZX SPECTRUM NEXT

Layer 2 X Offset Register $16

Bit Effect
7-0 Writes or reads X pixel offset used for drawing Layer 2 graphics on the screen.

This can be used for creating scrolling effects. For 320x256 and 640x256 modes, 9 bits are
required; use Layer 2 X Offset MSB Register $71 to set it up.

Layer 2 Y Offset Register $17

Bit Effect
7-0 Writes or reads Y pixel offset used for drawing Layer 2 graphics on the screen.

Valid range is:

e 256x192: 191
e 320x256: 255
e 640x256: 255

Clip Window Layer 2 Register $18

Bit Effect

7-0 Reads and writes clip-window coordinates for Layer 2

4 coordinates need to be set: X1, X2, Y1 and Y2. Which coordinate gets set, is determined
by index. As each write to this register will also increment index, the usual flow is to reset the
index to 0 in Clip Window Control Register $1C, then write all 4 coordinates in succession.
Positions are inclusive. Furthermore, X positions are doubled for 320x256 mode, quadrupled
for 640x256. Therefore, to view the whole of Layer 2, the values are:

256x192 320x256 640 x256

0 X1 position 0 0 0
1 X2 position 255 159 159
2 Y1 position 0 0 0
3 Y2 position 191 255 255

65

LAYER 2

Clip Window Control Register $1C

Write:
Bit Effect
7-4 Reserved, must be 0
3 1 to reset Tilemap clip-window register index
2 1 to reset ULA/LoRes clip-window register index
1 1 to reset Sprite clip-window register index
0 1 toreset Layer 2 clip-window register index
Read:
Bit Effect
7-6 Current Tilemap clip-window register index
5-4 Current ULA /LoRes clip-window register index
3-2 Current Sprite clip-window register index
1-0 Current Layer 2 clip-window register index

Palette Index Register $40

Palette Value Register $41

Enhanced ULA Control Register $43
Enhanced ULA Palette Extension $44

See description under Palette chapter, section ?77.

Layer 2 Control Register $70

Bit Effect

7-6 Reserved, must be 0

5-4 Layer 2 resolution (0 after soft reset)
00 256x192, 8BPP
01 320x256, 8BPP
10 640x256, 4BPP

3-0 Palette offset (0 after soft reset)

Layer 2 X Offset MSB Register $71

Bit Effect
7-1 Reserved, must be 0
0 MSB for X pixel offset

This is only used for 320x256 and 640x256 modes. Together with Layer 2 X Offset Register

$16 full 319 pixels offsets are available. For 640x256 only 2 pixel offsets are possible.

66

CHAPTER 3. ZX SPECTRUM NEXT

This page intentionally left empty

67

TILEMAP

3.6 Tilemap

Tilemap is fast and effective way of displaying 8x8 pixel blocks on the screen. There are two
possible resolutions available: 40x32 or 80x32 tiles. Tilemap layer overlaps ULA by 32 pixels
on each side. Or in other words, similar to 320x256 and 640x256 modes of Layer 2, tilemap
also covers the whole of the screen, including the border.

Tilemap is defined by 2 data structures: tile definitions and tilemap data itself.

3.6.1 Tile Definitions

Tiles are 8x8 pixels with each pixel representing an index of the colour from the currently
selected tilemap palette.

Each pixel occupies 4-bits, meaning tiles can use 16 colours. However, as we’ll see in the next
section, it’s possible to specify a 4-bit palette offset for each tile which allows us to reach all
256 colours from the palette.

A maximum of 256 tile definitions are possible, but this can be extended to 512 if needed using
Tilemap Control Register $6B.

All tiles definitions are specified in a contiguous memory block. The offset of tile definitions
memory address relative to the start of bank 5 needs to be specified with Tile Definitions Base
Address Register $6F.

3.6.2 Tilemap Data

Tilemap data specifies the tile definition index for each of the 40x32 or 80x32 tiles. Each tile
takes 2 bytes:

High Byte Low Byte
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

=

@)

0 %

& S 8 D) "8)

S E|E|3|= E

£ = | = 2| B

= > > = -

< - =

A,

Palette Offset 4-bit palette offset for this tile. This allows shifting colours to other 16-colour
“banks” thus allowing us to reach the whole 256 colours from the palette.

X Mirror If 1, this tile will be mirrored in X direction.
Y Mirror If 1, this tile will be mirrored in Y direction.
Rotate If 1, this tile will be rotated 90°clockwise.

ULA Mode If 1, this tile will be rendered on top, if 0 below ULA display. However in
512 tile mode, this is the 8th bit of tile index.

68

CHAPTER 3. ZX SPECTRUM NEXT

Tile Index 8-bit tile index within the tile definitions.

However, it’s possible to eliminate attributes byte by setting bit 5 in Tilemap Control Register
$6B. This only leaves an 8-bit tile index. Tileset then only occupies half the memory. But we
lose the option to specify attributes for each tile separately. Instead attributes for all tiles are
taken from Default Tilemap Attribute Register $6C.

The offset of the tilemap data memory address relative to the start of bank 5 needs to be
specified with Tilemap Base Address Register $6E.

3.6.3 Memory Organization

The Tilemap layer is closely tied with ULA. Memory wise, it always exists in 16K slot 5.
By default, this page is loaded into 16K slot 1 $4000-$7FFF (examples here will assume this
configuration, if you load into a different slot, you will have to adjust addresses accordingly).

If both ULA and tilemap are used, memory should be arranged to avoid overlap. Given ULA
pixel and attributes memory occupied memory addresses $4000-$5AFF, this leaves $5B00-$7FFF
for tilemap. If we also take into account various system variables that reside on top of ULA
attributes, $6000 should be used for starting address. This leaves us:

40x32 80x32
Bytes per tile 1 2 1 2
Bytes per tileset 1280 | 2560 | 2560 | 5120
Max Tile Definitions | 215 | 175 | 175 | 95

We as programmers need to tell hardware where in the memory tilemap and tile definitions are
stored. Tilemap Base Address Register $6E and Tile Definitions Base Address Register
$6F are used for that.

Both addresses are provided as most significant byte of the offset into memory slot 5 (which
starts at $4000). This means we can only store data at multiples of 256 bytes. For example, if
data is stored at $6000, the MSB offset value would be $20 ($6000 - $4000 = $2000).

Generic formula to calculate MSB of the offset is: (Address - $4000) >> 8.

3.6.4 Combining ULA and Tilemap

ULA and Tilemap can be combined in two ways:

e Standard mode: uses bit 0 from tile’s attribute byte to determine if a tile is above or below
ULA. If tilemap uses 2 bytes per tile, we can specify the priority for each tile separately,
otherwise we specify it for all tiles. Transparent pixels are taken into account - if the top
layer is transparent, the bottom one is visible through.

e Stencil mode: only used if both, ULA and tileset are enabled. The final pixel is transparent
if both, ULA and tilemap pixels are transparent. Otherwise final pixel is AND of both
colour bits. This mode allows one layer to act as a cut-out for the other.

69

10

11

9

10

11

12

13

14

TILEMAP

3.6.5 Examples

Using tilemaps is very simple. The most challenging part in my experience was finding a drawing
program that would export to required formats in full. The best results I have achieved were
with Remy’s Sprite, Tile and Palette editor website®. Even then, I had to manually tweak
binary files to achieve desired results (single byte per tile).

Regardless of the editor, we need 3 pieces of data: palette, tile definitions and tileset itself. In
this example, they are included as binary files:

tilemap:
INCBIN "tiles.map"
tilemapLength: EQU $- tilemap

tiles:

INCBIN "tiles.spr"
tilesLength: EQU $ - tiles
palette:

INCBIN "tiles.pal"
palettelength: EQU $-palette

With all data in place, we can start setting up tilemap:

START_OF_BANK_5 EQU $4000

START_OF_TILEMAP EQU $6000 ; Just after ULA attributes and system vars
START_OF_TILES EQU $6600 ; Just after 40x32 tilemap
OFFSET_QOF_MAP EQU (START_OF_TILEMAP - START_OF_BANK_5) >> 8

OFFSET_OF_TILES EQU (START_OF_TILES - START_OF_BANK_5) >> 8

; Enable tilemap mode
NEXTREG $6B, %10100001 ; 40x32, 8-bit entries
NEXTREG $6C, %00000000 ; palette offset, visuals

; Tell hardware where to find tiles
NEXTREG $6E, OFFSET_OF_MAP ; MSB of tilemap in bank 5
NEXTREG $6F, OFFSET_OF_TILES ; MSB of tilemap definitions

Above code uses couple neat preprocessing tricks to automatically calculate MSB for tilemap
and tile definitions offsets. The rest is simply setting up desired behaviour using Next registers.

Shttps://zx.remysharp.com/sprites/

70

CHAPTER 3. ZX SPECTRUM NEXT

The only remaining piece is to actually copy all the data to expected memory locations:

1 ; Setup tilemap palette

2 NEXTREG $43, %00110000 ; Auto increment, select first tilemap palette
3

4 ; Copy palette

5 LD HL, palette ; Address of palette data in memory
6 LD B, 16 ; Copy 16 colours

7 CALL Copy8BitPalette ; Call routine for copying

8

9 ; Copy tile definitions to expected memory

10 LD HL, tiles ; Address of tiles in memory

11 LD BC, tilesLength ; Number of bytes to copy

12 CALL CopyTileDefinitions ; Copy all tiles data

13

14 ; Copy tilemap to expected memory

15 LD HL, tilemap ; Addreess of tilemap in memory

16 CALL CopyTileMap40x32 ; Copy 40x32 tilemaps

We already know Copy8BitPalette routine from Layer 2 chapter, the other two are straightforward
LDIR loops:

1 CopyTileDefinitions:

2 LD DE, START_OF_TILES
3 LDIR
4 RET

6 CopyTileMap40x32:
7 LD BC, 40%32 ; This variant always loads 40x32
8 JR copyTileMap

10 CopyTileMap80x32:

11 LD BC, 80%32 ; This variant always loads 80x32
12

13 CopyTileMap:

14 LD DE, START_OF_TILEMAP

15 LDIR

16 RET

71

TILEMAP

3.6.6 Tilemap Registers

Sprite and Layers System Register $15

Bit Effect
7 1 to enable lo-res layer, 0 disable it

1 to flip sprite rendering priority, i.e. sprite 0 is on top (0 after reset)

1 to change clipping to “over border” mode (doubling X-axis coordinates of clip window,
0 after reset)

4-2 Layers priority and mixing
000 S L U (Sprites are at top, Layer 2 under, Enhanced ULA at bottom)

001 LSU
010 S UL
011 L US
100 USL
101 ULS

110 Core 3.1.1+: (U|IT)S(T|U) (B+L) blending layer and Layer 2 combined
Older cores: S(U+L) colours from ULA and L2 added per R/G/B channel

111 Core 3.1.1+: (U|T)S(T|U) (B+L-5) blending layer and Layer 2 combined
Older cores: S(U+L-5) similar as 110, but per R/G/B channel (U+L-5)
110 and 111 modes: colours are clamped to [0,7]

1 1 to enable sprites over border (0 after reset)
0 1 to enable sprite visibility (0 after reset)
Clip Window Tilemap Register $1B

Bit Effect

7-0 Reads and writes clip-window coordinates for Tilemap

4 coordinates need to be set: X1, X2, Y1 and Y2. Tilemap will only be visible within these
coordinates. X coordinates are internally doubled for 40x32 or quadrupled for 80x32 mode.
Positions are inclusive. Default values are 0, 159, 0, 255. Origin (0,0) is located 32 pixels to
the top-left of ULA top-left coordinate.

Which coordinate gets set, is determined by index. As each write to this register will also
increment index, the usual flow is to reset the index to 0 in Clip Window Control Register
$1C, then write all 4 coordinates in succession.

Clip Window Control Register $1C

See description under Layer 2 chapter, section 77.

72

CHAPTER 3. ZX SPECTRUM NEXT

Tilemap Offset X MSB Register $2F

Bit Effect
7-2 Reserved, use 0
1-0 Most significant bit(s) of X offset

In 40x32 mode, meaningful range is 0-319, for 80x32 0-639. Low 8-bits are stored in Tilemap
Offset X LSB Register $30.

Tilemap Offset X LSB Register $30

Bit Effect

7-0 X offset for drawing tilemap in pixels

Tilemap X offset in pixels. Meaningful range is 0-319 for 40x32 and 0-639 for 80x32 mode.
To write values larger than 255, Tilemap Offset X MSB Register $2F is used to store MSB.

Tilemap Offset Y Register $31

Bit Effect
7-0 Y offset for drawing tilemap in pixels

Y offset is 0-255.

Palette Index Register $40

Palette Value Register $41

Enhanced ULA Control Register $43
Enhanced ULA Palette Extension $44

See description under Palette chapter, section ?7.

Tilemap Transparency Index Register $4C

Bit Effect
7-5 Reserved, must be 0
4-0 Index of transparent colour into tilemap palette

The pixel index from tile definitions is compared before palette offset is applied to the upper 4
bits, so there’s always one index between 0 and 15 that works as transparent colour.

73

TILEMAP

ULA Control Register $68

Bit Effect
7 1 to disable ULA output (0 after soft reset)
6-5 (Core 3.1.14+) Blending in SLU modes 6 & 7
00 ULA as blend colour
01 No blending
10 ULA/tilemap as blend colour
11 Tilemap as blend colour

(Core 3.1.44) Cancel entries in 8x5 matrix for extended keys
1 to enable ULA+ (0 after soft reset)

1 to enable ULA half pixel scroll (0 after soft reset)
Reserved, set to 0

O N W P

1 to enable stencil mode when both the ULA and tilemap are enabled.

See Sprite and Layers System Register $15 for different priorities and mixing of ULA, Layer
2 and Sprites.

Tilemap Control Register $6B

Bit Effect
1 to enable tilemap, O disable tilemap
1 for 80x32, 0 40x32 mode

1 to eliminate attribute byte in tilemap

1 for second, 0 for first tilemap palette
1 to activate “text mode™!

Reserved, set to 0

1 to activate 512, 0 for 256 tile mode

1 to force tilemap on top of ULA

O N W 01 O N

Tn the text mode, tiles are defined as 1-bit B&W bitmaps, same as original Spectrum UDGs.
Each tile only requires 8 bytes. In this mode, the tilemap attribute byte is also interpreted
differently: bit 0 is still ULA over Tilemap (or 9th bit of tile data index) but the top 7 bits are
extended palette offset (the least significant bit is the value of the pixel itself). In this mode,
transparency is checked against Global Transparency Register $14 colour, not against the
four-bit tilemap colour index.

74

CHAPTER 3. ZX SPECTRUM NEXT

Default Tilemap Attribute Register $6C

If single byte tilemap mode is selected (bit 5 of Tilemap Control Register $6B set), this register
defines attributes for all tiles.

Bit Effect
7-4 Palette offset
3 1 to mirror tiles in X direction

2 1 to mirror tiles in Y direction
1 1 rotate tiles 90°clockwise
0

In 512 tile mode, bit 8 of tile index
1 for ULA over tilemap, 0 for tilemap over ULA

Tilemap Base Address Register $6E

Bit Effect
7-6 Ignored, set to 0
5-0 Most significant byte of tilemap data offset in bank 5

Tile Definitions Base Address Register $6F

Bit Effect
7-6 Ignored, set to O
5-0 Most significant byte of tile definitions offset in bank 5

75

SPRITES

3.7 Sprites

One of the frequently used “my computer is better” arguments from owners and developers of
contemporary systems such as Commodore 64 was hardware supported sprites. To be fair, they
had a point - poor old Speccy had none. But Next finally rectifies this with a sprite system
that far supersedes even later 16-bit era machines such as Amiga. And as we’ll see, it’s really
simple to program too!

Some of the capabilities of Next sprites:

e 128 simultaneous sprites

e 16x16 pixels per sprite

e Magnification of 2x, 4x or 8x horizontally and vertically
e Mirroring and rotation

e Sprite grouping to form larger objects

e 512 colours from 2 256 colour palettes

e Per sprite palette

e Built-in sprite editor

So lots of reasons to get excited! Let’s dig in!

3.7.1 Editing

Before describing how sprites hardware works, it would be beneficial to know how to draw them.
As mentioned, Next comes with a built-in sprite editor. To use it, change to desired folder,
then enter .spredit <filename> in BASIC or command line. The editor is quite capable and
can even be used with a mouse if you have one attached to your Next (or in the emulator).
Alternatively, if you're developing cross-platform, you can download UDGeed-Next” or use
Remy’s Sprite, Tile and Palette editor®. They all share very similar feature sets, so try them
out and decide for yourself.

3.7.2 Patterns

Next sprites have a fixed size of 16x16 pixels. Their display surface is 320x256, overlapping the
ULA by 32 pixels on each side. Or in other words, to draw the sprite fully on-screen, we need
to position it to (32,32) coordinate. And the last coordinate where the sprite is fully visible at
the bottom-right edge is (271,207). This allows sprites to be animated in and out of the visible
area. Sprites can be made visible or invisible when over the border as well as rendered on top
or below Layer 2 and ULA, all specified by Sprite and Layers System Register $15. It’s also
possible to further restrict sprite visibility within provided clip window using Clip Window
Sprites Register $19.

"http://zxbasic.uk/files/UDGeedNext-current.rar
8https://zx.remysharp.com/sprites/

76

CHAPTER 3. ZX SPECTRUM NEXT

Sprite patterns (or pixel data) are stored in Next FPGA internal 16K memory. As mentioned,
sprites are always 16x16 pixels but can be 8-bit or 4-bit.

e 8-bit sprites use full 8-bits to specify colour, so each pixel can be of any of 256 colours
from the sprite palette of which one acts as transparent. Hence each sprite occupies 256
bytes of memory and 64 sprites can be stored.

e 4-bit sprites use only 4-bits for colour, so each pixel can only choose from 16 colours, one
of which is reserved for transparency. However this allows us to store 2 colours per byte,
so these sprites take half the memory of 8-bit ones: 128 bytes each, meaning 128 sprites
can be stored in available memory.

3.7.3 Palette

Each sprite can specify its own palette offset. This allows sprites to share image data but use
different colours. 4 bits are used for palette offset, therefore the final colour index within the
current sprite palette (as defined by Enhanced ULA Control Register $43) is determined
using the following formula:

8-bit sprites 4-bit sprites
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
P P P P, O 0 0 0 P P P F O 0 0 0

+ S S¢ Ss Sy Sz Sy S1 S + 0 0 0 0 S35 S S So
= 0 G C5 Cy C3 Gy Ci (o = 0 G C5 Cy C3 Cy Ci1 Gy

If default palette offset and default palette are Palette offset can be thought of as if selecting
used, sprite colour index can be interpretted as one of 16 different 16-colour palettes.
RGB332 colour.

P, is palette offset bit, S,, sprite colour index bit and C), final colour index.

Transparent colour is defined with Sprites Transparency Index Register $4B.

7

SPRITES

3.7.4 Combined Sprites
Anchor Sprites

These are “normal” 16x16 pixel sprites, as described in previous sections. They act as standalone
sprites.

The reason they are called “anchors” is because multiple sprites can be grouped together to
form larger sprites. In such case “anchor” acts as a parent and all its “relative” sprites are tied
to it. In order to combine sprites, anchor needs to be defined first, immediately followed by all
its relative sprites. The group ends with the next anchor sprite which can either be another
standalone sprite, or an anchor for another sprite group. For example, if sprite 5 is setup as
an anchor, its relative sprites must be followed at 6, 7, 8... until another sprite that’s setup as
“anchor”.

There are 2 types of relative sprites: composite and unified sprites.

Composite Relative Sprites

Composite sprites inherit certain attributes from their anchor.

Inherited attributes: NOT inherited:
e Visibility e Rotation
e X e X & Y mirroring
Y e X & Y scaling
e Palette offset
e Pattern number
e 4 or 8-bit pattern

Relative sprites only have 8-bits for X and Y coordinates (ninth bits are used for other purposes).
But as the name suggests, these coordinates are relative to their parent anchor sprite so they
are usually positioned close by. When the anchor sprite is moved to a different position on the
screen, all its relatives are also moved by the same amount.

Visibility of relative sprites is determined as AND between anchor visibility and relative sprite
visibility. This way individual relative sprites can be made invisible independently from their
anchor, but if the anchor is invisible, then all its relative sprites will also be invisible.

Relative sprites inherit 4 or 8-bit setup from their anchor. They can’t use a different type but
can use a different palette offset than its anchor.

It’s also possible to tie relative sprite’s pattern number to act as an offset on top of its anchor’s
pattern number and thus easily animate the whole sprite group simply by changing the anchor’s
pattern number.

78

CHAPTER 3. ZX SPECTRUM NEXT

Unified Relative Sprites

Unified relative sprites are an extension of the composite type. Everything described above
applies here as well.

The main difference is the hardware will automatically adjust relative sprites X, Y, rotation,
mirroring and scaling attributes according to changes in anchor. So relatives will rotate, mirror
and scale around the anchor as if it was a single larger sprite.

3.7.5 Attributes

Attributes are 4 or 5 bytes that define where and how the sprite is drawn. The data can be set
either by selecting sprite index with Sprite Status/Slot Select $303B and then continuously
sending bytes to Sprite Attribute Upload $xx57 (which automatically increments sprite index
after all data for single sprite is transferred) or by calling individual direct access Next registers
$35-$39 or their auto-increment variants $75-$79. See registers section for a description of
individual bytes:

e Byte 0: Sprite port-mirror Attribute 0 Register $35

e Byte 1: Sprite port-mirror Attribute 1 Register $36

e Byte 2: Sprite port-mirror Attribute 1 Register $37

e Byte 3: Sprite port-mirror Attribute 1 Register $38

e Byte 4: Sprite port-mirror Attribute 1 Register $39

3.7.6 Examples

Reading about sprites may seem complicated, but in practice, it’s quite simple. The following
pages include sample code for working with sprites. To preserve space, only partial code
demonstrating relevant parts is included. You can find full source code on GitHub https:
//github.com/tomaz/zx-next-dev-guide.

79

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

SPRITES

Loading Patterns into FPGA Memory

Before we can use sprites, we need to load their data into FPGA memory. This example
introduces a generic routine that uses DMA® to copy from given memory to FPGA. Don’t
worry if it seems like magic - it’s implemented as a reusable routine, just copy it to your
project. Routine requires 3 parameters:

e HL Source address of sprites to copy from

e BC Number of bytes to copy

e A Starting sprite number to copy to

LoadSprites:
LD BC, $303B ; Prepare port for sprite index
0UT (C), A ; Load index of first sprite
LD (.dmaSource), HL ; Copy sprite sheet address from HL
LD (.dmaLength), BC ; Copy length in bytes from BC
LD HL, .dmaCode ; Setup source for 0TIR
LD B, .dmaCodelLength ; Setup length for OTIR
LD C, $6B ; Setup DMA port
OTIR ; Invoke DMA code
RET
.dmaCode:
DB %10000011 ; Disable DMA
DB %01111101 ; WRO transfer mode, A->B, write adress + block length
.dmaSource:
DW O ; WRO port A, source address
.dmal.ength:
DW O ; WRO block length in bytes
DB %01010100 ; WR1 read A, increment, to memory, bitmaks
DB 700000010 ; WR1 cycle port A length
DB %01101000 ; WR2 write B, port B address fixed, B is IO
DB %00000010 ; WR2 cycle length B
DB %10101101 ; WR4 continuous mode, write destination address
DW $5B ; Sprite image port $xx5B
DB %10000010 ; WR5 restart on end of block
DB %11001111 ; WR6 load
DB %10000111 ; WR6 enable DMA

.dmaCodeLength: EQU $-.dmaCode

Perhaps worth noting: routine uses a technique called “self-modifying code”. As the name
suggests, this means that the program modifies itself in RAM. In this case it modifies 2 addresses
“marked” by .dmaSource and .dmaLength labels. But it’s also possible to modify opcodes (in
this case NOPs are frequently used as placeholders). Either way, careful planning is required to
avoid writing over undesired parts.

And secondly, note the use of a dot in front of some labels. Many assemblers allow this notation
for local labels, only “visible” to code between 2 normal labels (without dot prefix).

https://wiki.specnext.dev/DMA

80

CHAPTER 3. ZX SPECTRUM NEXT

Loading Sprites

Using loadSprites routine is very simple. This example assumes you’ve edited sprites with
one of the editors and saved them as sprites.spr file in the same folder as the assembler code:

1 LD HL, sprites ; Sprites data source

2 LD BC, 16*16%5 ; Copy 5 sprites, each 16x16 pixels
3 LD A, O ; Start with first sprite

a CALL LoadSprites ; Load sprites to FPGA

6 Sprites:
7 INCBIN "sprites.spr" ; Sprite sheets file

Enabling Sprites

After sprites are loaded into FPGA memory, we need to enable them:

1 NEXTREG $15, %01000001 ; Sprite O on top, SLU, sprites visible

Displaying a Sprite

Sprites are now loaded into FPGA memory, they are enabled, so we can start displaying them.
This example displays the same sprite pattern twice, as two separate sprites:

1 NEXTREG $34, 0O ; First sprite

2 NEXTREG $35, 100 ; X=100

3 NEXTREG $36, 80 ; Y=80

4 NEXTREG $37, %00000000 ; Palette offset, no mirror, no rotation
5 NEXTREG $38, %10000000 ; Visible, no byte 4, pattern O

6

7 NEXTREG $34, 1 ; Second sprite

8 NEXTREG $35, 86 ; X=86

9 NEXTREG $36, 80 ; Y=80

10 NEXTREG $37, %00000000 ; Palette offset, no mirror, no rotation

11 NEXTREG

81

$38,

%10000000

; Visible, no byte 4, pattern O

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

SPRITES

Displaying Combined Sprites

Even handling combined sprites is much simpler in practice than in theory! This example
combines 4 sprites into a single one using unified relative sprites. Note use of “inc” register $79
which auto-increments sprite index for next sprite:

NEXTREG
NEXTREG
NEXTREG
NEXTREG
NEXTREG
NEXTREG

NEXTREG
NEXTREG
NEXTREG
NEXTREG
NEXTREG

NEXTREG
NEXTREG
NEXTREG
NEXTREG
NEXTREG

NEXTREG
NEXTREG
NEXTREG
NEXTREG
NEXTREG

$34,
$35,
$36,
$37,
$38,
$79,

$35,
$36,
$37,
$38,
$79,

$35,
$36,
$37,
$38,
$79,

$35,
$36,
$37,
$38,
$79,

2

150

80
%00000000
%11000001
700100000

16

0
%00000000
%11000010
%01000000

0

16
%00000000
%11000011
%01000000

16
16
%00000000
%11000100
%01000000

; Select third sprite

; X=150

; Y=80

; Palette offset, no mirror, no rotation

; Visible, use byte 4, pattern 1

; Anchor with unified relatives, no scaling

; X=AnchorX+16

; Y=AnchorY+0

; Palette offset, no mirror, no rotation
; Visible, use byte 4, pattern 2

; Relative sprite

; X=AnchorX+0

; Y=AnchorY+16

; Palette offset, no mirror, no rotation
; Visible, use byte 4, pattern 3

; Relative sprite

; X=AnchorX+16

; Y=AnchorY+16

; Palette offset, no mirror, no rotation
; Visible, use byte 4, pattern 4

; Relative sprite

Because we use combined sprite, we only need to update the anchor to change all its relatives.
And because we set it up as unified relative sprites, even rotation, mirroring and scaling is

inherited as if it was a single sprite!

NEXTREG
NEXTREG
NEXTREG
NEXTREG
NEXTREG
NEXTREG

$34,
$35,
$36,
$37,
$38,
$39,

1

200

100
7400001010
%11000001
700101010

; Select second sprite
; X=200
; Y=100
; Palette offset, mirror X, rotate
; Visible, use byte 4, pattern 1
; Anchor with unified relatives,

scale X$Y

82

CHAPTER 3. ZX SPECTRUM NEXT

3.7.7 Sprite Registers
Sprite Status/Slot Select $303B

Write: sets active sprite attribute and pattern slot index used by Sprite Attribute Upload
$xx57 and Sprite Pattern Upload $xx5B.
Bit Effect
7 Set to 1 to offset reads and writes by 128 bytes
6-0 0-63 for pattern slots and 0-127 for attribute slots

Read: returns sprite status information

Bit Effect
7-2 Reserved
1 1 if sprite renderer was not able to render all sprites; read will reset to 0

0 1 when collision between any 2 sprites occurred; read will reset to 0

Sprite Attribute Upload $xx57

Uploads the attributes for the currently selected sprite slot. Attributes require 4 or 5 bytes.
After all bytes are sent, the sprite index slot automatically increments. See the following Next
registers that directly set the value for specific bytes:

e Byte 0: Sprite port-mirror Attribute 0 Register $35

e Byte 1: Sprite port-mirror Attribute 1 Register $36

e Byte 2: Sprite port-mirror Attribute 1 Register $37

e Byte 3: Sprite port-mirror Attribute 1 Register $38

e Byte 4: Sprite port-mirror Attribute 1 Register $39

Sprite Pattern Upload $xx5B

Uploads sprite pattern data. 256 bytes are needed for each sprite. For 8-bit sprites, each
pattern slot contains a single sprite. For 4-bit sprites, it contains 2 128 byte sprites. After 256
bytes are sent, the target pattern slot is auto-incremented.

Bit Effect

7-0 Next byte of pattern data for current sprite

83

SPRITES

Peripheral 4 Register $09

Bit Effect
7 1 to enable AY2 “mono” output (A+B+C is sent to both R and L channels, makes it
a bit louder than stereo mode)
6 1 toenable AY1 “mono” output, O default
5 1 to enable AY0 “mono” output (0 after hard reset)

4 1 to lockstep Sprite port-mirror Index Register $34 and Sprite Status/Slot Select
$303B
1 to reset mapram bit in DivMMC
2 1 to silence HDMI audio (0 after hard reset) (since core 3.0.5)
1-0 Scanlines weight (0 after hard reset)
Core 3.1.1+ Older cores
00 Scanlines off Scalines off
01 Scanlines 50% Scanlines 75%
10 Scanlines 50% Scanlines 25%
11 Scanlines 25% Scanlines 12.5%

Sprite and Layers System Register $15

See description under Tilemap chapter, section 77.

Clip Window Sprites Register $19

Bit Effect

7-0 Reads or writes clip-window coordinates for Sprites

4 coordinates need to be set: X1, X2, Y1 and Y2. Sprites will only be visible within these
coordinates. Positions are inclusive. Default values are 0, 255, 0, 191. Origin (0,0) is located
32 pixels to the top-left of ULA top-left coordinate.

Which coordinate gets set, is determined by index. As each write to this register will also
increment index, the usual flow is to reset the index to 0 with Clip Window Control Register
$1C, then write all 4 coordinates in succession.

When “over border” mode is enabled (bit 1 of Sprite and Layers System Register $15), X
coordinates are doubled internally.

Clip Window Control Register $1C

See description under Layer 2 chapter, section ?77.

Sprite Port-Mirror Index Register $34

If sprite id lockstep in Peripheral 4 Register $09 is enabled, write to this registers has same
effect as writing to Sprite Status/Slot Select $303B.

84

CHAPTER 3. ZX SPECTRUM NEXT

Bit Effect

7 Set to 1 to offset reads and writes by 128 bytes
6-0 0-63 for pattern slots and 0-127 for attribute slots

Sprite port-mirror Attribute 0 Register $35

Bit Effect

7-0 Low 8 bits of X position

Sprite port-mirror Attribute 1 Register $36

Bit Effect

7-0 Low 8 bits of Y position

Sprite port-mirror Attribute 2 Register $37

Bit Effect

7-4 Palette offset
3 1 to enable X mirroring, 0 to disable
2 1 to enable Y mirroring, 0 to disable
1 1 to rotate sprite 90°clockwise, 0 to disable
0

Anchor sprite: most significant bit of X coordinate
Relative sprite: 1 to add anchor palette offset, 0 to use independent palette offset

Sprite port-mirror Attribute 3 Register $38

Bit Effect

7 1 to make sprite visible, 0 to hide it
6 1 to enable optional byte 4, 0 to disable it
5-0 Pattern index 0-63 (7th, MSB for 4-bit sprites is configured with byte 4)

85

SPRITES

Sprite port-mirror Attribute 4 Register $39

For anchor sprites:

Bit

Effect

7-6

4-3

2-1
0

H+N6 where H is 4/8-bit data selector and N6 is sub-pattern selector for 4-bit sprites
00 Anchor sprite, 8-bit
10 Anchor sprite, 4-bit using bytes 0-127 of pattern slot
11 Anchor sprite, 4-bit using bytes 128-255 of pattern slot

0 if this anchor’s relative sprites are composite, 1 for unified sprite
X axis scale factor

00 1Ix

01 2x

10 4x

11 8x

Y axis scale factor, see above
Most significant bit of Y coordinate

For composite relative sprites:

Bit Effect
7-6 01 needs to be used for relative sprites
5 4-bit mode: N6, 1 to use bytes 0-127, 0 to use bytes 128-255 of pattern slot
8-bit mode: not used, set to 0
4-3 X axis scale factor, see below
2-1 Y axis scale factor, see below
0 1 to enable relative pattern offset, 0 to use independent pattern index

For unified relative sprites

Bit Effect
7-6 01 needs to be used for relative sprites
5 4-bit mode: N6, 1 to use bytes 0-127, 0 to use bytes 128-255 of pattern slot
8-bit mode: not used, set to 0
4-1 Set to 0; scaling is defined by anchor sprite
0 1 to enable relative pattern offset, 0 to use independent pattern index

86

CHAPTER 3. ZX SPECTRUM NEXT

Palette Index Register $40

Palette Value Register $41

Enhanced ULA Control Register $43
Enhanced ULA Palette Extension $44

See description under Palette chapter, section ?77?.

Sprites Transparency Index Register $4B

Bit Effect
7-0 Sets index of transparent colour inside sprites palette.

For 4-bit sprites, low 4 bits of this register are used.

Sprite Port-Mirror Attribute N (With Inc) Register $75-$79

This set of registers work the same as their non-inc counterpart in $35-$39; writes byte 0-4 of
Sprite attributes for currently selected sprite, except $7X variants also increment Sprite Port-
Mirror Index Register $34 after write. When batch updating multiple sprites, typically the
first sprite is selected explicitly, then $3X registers are used until the last write, which occurs
through $7X register. This way we’ll also increment the sprite index for the next iteration.

87

SOUND

3.8 Sound

Next inherits the same 3 AY-3-8912 chips setup as used in 128K Spectrums. This allows us to
reuse many of the pre-existing applications and routines to play sound effects and music.

3.8.1 AY Chip Registers

AY chip has 3 sound channels, called A, B and C. Combined with 3 chips, this allows us to
produce 9 channel music. Programming wise, each of the 3 chips needs to be selected first
via Turbo Sound Next Control $FFFD register. Afterwards, we can set various parameters
through Peripheral 3 Register $08 and Peripheral 4 Register $09.

AY chip is controlled by 14 internal registers. To program them, we first need to select the
register with Turbo Sound Next Control $FFFD and then write the value with Sound Chip
Register Write $BFFD.

3.8.2 Editing and Players

Several applications can produce sounds or music compatible with the AY chip. For sounds,
Shiru’s AYFX Player!® can be used. This program also includes a Z80 native player that can
directly load and play sound effects. Alternatively, Remy’s AY audio generator website!! can
produce exactly the same results and is fully compatible with AYFX Player.

A different way of playing sounds is to convert the WAV file into 1, 2 or 4-bit per sample sound
with the ChibiWave application. Sounds take a bit more memory this way but are much easier
to create. You can find the application, as well as tutorial and playback source code on Chibi
Akumas website'?. While there, definitely check other tutorials too - they're all high quality
and available as both, written posts and YouTube videos.

For creating music there are also several options. NextDAW!? is native composer that runs on
ZX Spectrum Next itself. Or if you prefer cross-platform, Arkos Tracker'* or Vortex Tracker!®
should do the job. All include “drivers”; Z80 code you can include in your program that can
load and play created music.

Ohttps://shiru.untergrund.net/software.shtml#old
Uhttps://zx.remysharp.com/audio/
2https://www.chibiakumas.com/z80/platformé.php#LessonP35
3https://nextdaw.biasillo.com/
Yhttps://www.julien-nevo.com/arkostracker/
5https://bulba.untergrund.net/vortex_e.htm

88

10

11

CHAPTER 3. ZX SPECTRUM NEXT

3.8.3 Examples

Before we can start playing sounds, we need to enable the sound hardware. While this is usually
enabled by default, it’s nonetheless a good idea to ensure our program will always run under
the same conditions.

; Setup Turbo Sound chip

LD BC, $FFFD ; Turbo Sound Next Control Register
LD A, %11111101 ; Enable left+right audio, select AY1
0uT (C), A

; Setup mapping of chip channels to stereo channels
NEXTREG $08, 00010010 ; Use ABC, enable internal speaker $turbosound
NEXTREG $09, %11100000 ; Enable mono for AV1-3

Programming AY consists of writing various values to its registers. As mentioned, this is a two-
step process: first select register number, then write the value. Multiple writes are required
for each tone to set period, volume etc. To make it simpler, I created a subroutine. It takes 2
parameters: A for register number (0-13) and D with value to write.

WriteDToAYReg:
; Select desired register
LD BC, $FFFD
ouT (C), A

; Write given value

LD A, D

LD BC, $BFFD
OUT (C), A
RET

Companion code on GitHub includes expanded code as well as a simple player that plays
multiple tones in sequence. For the purposes of this book, I used Remy’s AY audio generator
website to load one of the example effects, then manually copied raw values into the source
code. Laborious process to say the least - this is not how effects should be handled in real life.
But I wanted to learn and demonstrate how to program AY chip, not how to use ready-made
drivers to play effects or music. Furthermore, my “player” blocks the main loop; ideally, sound
effects and music would play on the interrupt handler. This could be a nice homework for the
reader - example in section ?? should give you an idea of how to achieve this - happy coding!

89

SOUND

3.8.4 Sound Registers
Turbo Sound Next Control $FFFD

When bit 7 is 1:
Bit Effect

7 1

6 1 to enable left audio

5 1 to enable right audio
4-2 Must be 1

1-0 Selects active chip:
00 Unused
01 AY3
10 AY2
11 AY1

When bit 7 is 0:
Bit Effect

7 0

6-0 Selects given AY register number for read or write from active sound chip

Sound Chip Register Write $BFFD

Bit Effect

7-0 Writes given value to currently selected register:

0 - Channel A tone, low byte

1 - Channel A tone, high 4-bits

765]al3]2]1]0

32|10

A tone

0

0

A tone high

2 - Channel B tone, low byte

3 - Channel B tone, high 4-bits

716 |5 |al3]2]1]0

3210

B tone

B tone high

4 - Channel C tone, low byte

765]al3]2]1]0

C tone

5 - Channel C tone, high 4-bits

32|10

C tone high

90

CHAPTER 3. ZX SPECTRUM NEXT

91

6 - Noise period

4 3[2]1]0

Noise Period

8 - Channel A volume/envelope

30210
A Volume

10 - Channel C volume/envelope

3210
0 0 0 0 C Volume

11 - Envelope period fine

716 |5 |al3]2]1]0
Envelope bits 7-0

13 - Envelope shape

3 2|1
o|lo|lo|o|C|A|A|H

=)

H “Hold”

7 - Flags

4 3 2 1

B A C B

Noise Tone

9 - Channel B volume/envelope

32|10
B Volume

Note: Registers 8-10 work as volume
control if bit 4 is 0, otherwise envelop
generator is used (see registers 11-13). In
this case bits 3-0 are ignored.

12 - Envelope period coarse

76 |5]a|3|2]1]o0

Envelope bits 15-8

1 envelope generator performs 1 cycle then holds the end value

0 cycles continuously
A; “Alternate”
If “hold” set
1 the value held is initial value
0 the value held is the final value
If “hold” not set

1 envelope generator alters direction after each cycle

0 resets after each cycle
Ay “Attack”
1 the generator counts up
0 the generator counts down
C “Continue”
1 “hold” is followed

0 the envelope generator performs one cycle then drops volume to 0 and

stays there, overriding “hold”

SOUND

Peripheral 2 Register $06

Bit Effect

7 1 to enable CPU speed mode key "F8”, 0 to disable (1 after soft reset)

6 Core 3.1.24: Divert BEEP-only to internal speaker (0 after hard reset)
Pre core 3.1.2: DMA mode, 0 zxnDMA, 1 Z80 DMA (0 after hard reset)

5 Core 2.04+: 1 to enable "F3” key (50/60 Hz switch) (1 after soft reset)
Pre core 2.0: ”Enable Lightpen”

4 1 to enable DivMMC automap and DivMMC NMI by DRIVE button (0 after hard
reset)

3 1 to enable multiface NMI by M1 button (0 after hard reset)

2 1 to set primary device to mouse in PS/2 mode, 0 to set to keyboard

1-0 Audio chip mode:

00 YM

01 AY

10 Disabled

11 Core 3.0+: Hold all AY in reset

Peripheral 3 Register $08

Bit

Effect

O N W+ 01 O N

1 unlock / 0 lock port $7FFD paging

1 to disable RAM and I/O port contention (0 after soft reset)

AY stereo mode (0 = ABC, 1 = ACB) (0 after hard reset)

Enable internal speaker (1 after hard reset)

Enable 8-bit DACs (A,B,C,D) (0 after hard reset)

Enable port $FF Timex video mode read (0 after hard reset)

Enable Turbosound (currently selected AY is frozen when disabled) (0 after hard reset)
Implement Issue 2 keyboard (port $FE reads as early ZX boards) (0 after hard reset)

Peripheral 4 Register $09

See description under Sprite chapter, section ?7.

92

CHAPTER 3. ZX SPECTRUM NEXT

This page intentionally left empty

93

10

11

KEYBOARD

3.9 Keyboard

Next inherits ZX Spectrum keyboard handling, so all legacy programs will work out of the box.
Additionally, it allows reading the status of extended keys.

3.9.1 Legacy Keyboard Status

7ZX Spectrum uses 8 x5 matrix for reading keyboard status. This means 40 distinct keys can be
represented. The keyboard is read from ULA Control Port $xxFE with particular high bytes.
There are 8 possible bytes, each will return the status of 5 associated keys. If a key is pressed,
the corresponding bit is set to 0 and vice versa.

Example for checking if P or I is pressed:

LD BC, $DFFE ; We want to read keys..... YUIOP

IN A, (C) ; A holds values in bits... 43210
checkP:

BIT 0, A ; test bit 0 of A (P key)

JR NZ checkI ; 1f bit0O=1, P not pressed

500 ; P is pressed
checkI:

BIT 2, A ; test bit 2 of A (I key)

JR NZ continue ; if bit2=1, I not pressed
; I is pressed
continue:

As mentioned in Ports chapter, section 77, we can slightly improve performance if we replace
first two lines with:

LD A, $DF
IN ($FE)

Reading the port in first example requires 22 t-states (10412) vs. 18 (7+11). The difference is
small, but it can add up as typically keyboard is read multiple times per frame.

The first program is more understandable at a glance - the port address is given as a whole 16-
bit value, as usually provided in the documentation. The second program splits it into 2 8-bit
values, so intent may not be immediately apparent. Of course, one learns the patterns with
experience, but it nonetheless demonstrates the compromise between readability and speed.

3.9.2 Next Extended Keys

Next uses larger 8x7 matrix for keyboard, with 10 additional keys. By default, hardware is
translating keys from extra two columns into the existing 8 x5 set. But you can turn this off
with bit 4 of ULA Control Register $68. Extra keys can be read separately via Extended
Keys 0 Register $B0 and Extended Keys 1 Register $B1.

94

CHAPTER 3. ZX SPECTRUM NEXT

3.9.3 Keyboard Registers

ULA Control Port $xxFE

Returns keyboard status when read with certain high byte values:

XX 4 3 2 1 0
$7F B N M Symb Space
$BF H J K L Enter
$DF Y U I 0 P
$EF 6 7 8 9 0
$F7 5 4 3 2 1
$FB | T R E W Q
$FD G F D S A
$FE v C X VA Caps

Bits are reversed: if a key is pressed, the corresponding bit is 0, if a key is not pressed, bit is 1.

Note: when written to, ULA Control Port $xxFE is used to set border colour and audio devices.
See description under ULA chapter, section 77 for details.

ULA Control Register $68

See description under Tilemap chapter, section ?7.

Extended Keys Registers 0 ($B0) & 1 ($B1)

Bit Effect $BO $B1

7 0 if key pressed, 1 otherwise ; Delete

6 0 if key pressed, 1 otherwise " Edit

5 0 if key pressed, 1 otherwise , Break

4 0 if key pressed, 1 otherwise . Inv Video
3 0 if key pressed, 1 otherwise Up True Video
2 0 if key pressed, 1 otherwise Down Graph

1 0 if key pressed, 1 otherwise Left Caps Lock
0 0 if key pressed, 1 otherwise Right Extend

Available since core 3.1.5

95

INTERRUPTS ON NEXT

3.10 Interrupts on Next
Maskable interrupts on ZX Spectrum:

e Mode 0: meant for interrupts triggered by an external device. Instruction to be executed
needs to be placed on the data bus (RST or CALL for example). On ZX Spectrum this is
the mode that is enabled by default when the device powers up. But ROM soon sets up
mode 1.

e Mode 1: on ZX Spectrum, this interrupt is triggered by vertical blanking if the screen
refresh, roughly 50 times per second. When this occurs, current contents of PC counter
are pushed onto stack SP, then the address of $0038 is loaded and a program stored on
that location will start running. On ZX Spectrum Next this interrupt is responsible for
updating the system variable frame counter and scanning the keyboard.

e Mode 2: similar to IM 1 in frequency and handling, but uses vector table to jump to
interrupt program instead of executing hard code ROM routine thus allowing the user to
set their own interrupt handler.

On ZX Spectrum Next interrupt handler can be replaced by either:

e Setting Z80 to IM 2 mode and configuring custom interrupt handler routine

e Paging out ROM (as described in section ?7) and replace it with RAM page with custom
interrupt routine at address $0038

You can also adjust timing of the interrupts with Next/TBBlue Feature Control Registers $22
and $23.

96

CHAPTER 3. ZX SPECTRUM NEXT

Example of setting up custom interrupt vectors with IM 216:

16Based on http://codersbucket.blogspot.com/2015/04/interrupts-on-zx-spectrum-what-are.html

97

Chapter 4

Instructions at a Glance

This chapter presents all instructions at a glance for quick info and to easily compare them
when choosing the most optimal combination for the task at hand. Instructions are grouped
into logical sections based on the area they operate on.

99

Instruction Execution

B Number of bytes instruction uses in RAM
Mc Number of machine cycles instruction takes to complete

Ts Number of clock periods instruction requires to complete

Flags

SE Set if 2-complement value is negative.
ZF Set if the result is zero.

HY The half-carry of an addition/subtraction (from bit 3 to 4). Needed for
BCD correction with DAA

PV This flag can either be the parity of the result (PF), or 2-complement
signed overflow (VF): set if 2-complement value doesn’t fit in the register

NF Shows whether the last operation was an addition (0) or a subtraction
(1). This information is needed for DAA

CF The carry flag, set if there was a carry from the most significant bit

(copied from section ?? as convenience)

Effects

0/1 Flagisset to 0 or 1
! Flag is modified according to operation
- Flag is not affected
7 Effect on flag is unpredictable
VF P/V flag is used as overflow
PF P/V flag is used as parity
e Special case, see description under the table or in chapter 77?7

Notes

YF and XF flags are not represented in the tables; they’re irrelevant from the programmer point
of view. They usually contain a copy of bit 5 and 3 of the accumulator A, but special cases are
described.

I used 4 sources for comparing effects: Z80 undocumented!, Programming the Z80 third
edition?, Zilog Z80 manual® and Next Dev Wiki*. Where different and I couldn’t verify, I
opted for variant that matches most sources with slightly greater precedence for Next Dev
Wiki side.

http://www.myquest .nl/z80undocumented/
Zhttp://www.z80.1info/zaks.html
Shttps://www.zilog.com/docs/z80/um0080. pdf
‘https://wiki.specnext.dev/Extended_Z80_instruction_set

100

CHAPTER 4. INSTRUCTIONS AT A GLANCE

4.1 8-Bit Arithmetic and Logical

Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
ADD A,r Aeh+r $ Lt VF 0 1 10[000kr+ .. 1B 1 4 T o
B 000
ADD A,p A—h+p $ ¢ ¢ VF 0 § 11011101 DD 28 2 8 ¢ 001
10 [000Q] kp~ D 010
E 011
ADD A,q Aeh+q 3 ¢ VF 0O § 11111101 FD 28 2 8 H 100
10 [000] kg~ L 101
A 111
ADD A,n A—A+n $ ¢ ¢ VF 0 § 11[000/110 C6 28 2 7
k-0 -]
ADD A, (HL) A< A+(HL) $ 7 ¢ VF 0 § 10000110 86 18 2 7
p kpA
ADD A, (IX+d) A—A+(IX+d) $ t ¢ VF 0 ¢ 11011101 DD 38 5 19 B 000
10 [000] 110 86 c 001
e d --- D 010
I.().I E 011
ADD A, (IY+d) AA+(IY+d) $ ¢ ¢ VF 0 § 11111101 FD 38 5 19 1Ixy 100
10 [000] 110 86 ixl 1‘;1
k---d ---
i
ADC A,s? A A+s+CF $ 3 3 VF o ¢ ..[007]..
K
SUB s? hed-s t 1 1 VF 1 } .. [010.. 4 st
SBC A,s? AA-s—CF $ 1t 3 VF 1 1 ..[Oif.. O
AND s? AAns $ 3 1 PF 0 0 ..[f00].. ?Y (1)3;
h
XOR s? AeAvs ! 3 o PF O o0 ..[01.. IY; 101
A 111
OR s? A—Avs ! 3 0 PF 0 O
cp st? A-s $ 3 7 VF 1 ¢ 111
INC r rer+t ? 7 L VF* 0 - 00 krsi[100 .. 1B 1 4
INC p pep+i $ 3 ¢ VF* 0 - 11 011 101 DD 2B 2
00 kp~ [100
INC q qeqtl $ ¢ ¢ VF* 0 - 11 111 101 FD 28 2 8B
00 kg [100
INC (HL) (HL) — (HL) +1 $ 3 ¢ VF* 0 - 0011000 34 18 3 11
INC (IX+d) (IX+d) « (IX+d)+1 $ ¢ ¢ VF* 0 - 11011 101 DD 38 6 23
00 110 [100] 34
k- d -
INC (IY+d) (IY+d) —(TV+d)+1 $ ¢ ¢ VF* 0 - 11 111 101 FD 3 6 23
00 110 34
k- d -
T
DEC m® mem-1 $ 3 3 veS 1 -[1I01

Notes: !YF and XF flags are copied from the operand s, not the result A-s
2s is any of r, p, q, n, (HL), (IX+d), (IY+d) as shown for ADD. Replace in the ADD set above. Ts also the same
3m is any of r, p, q, n, (HL), (IX+d), (IY+d) as shown for INC. Replace with in opcode. Ts also the same
4PV set if value was $7F before incrementing
5PV set if value was $80 before decrementing

101

CHAPTER 4. INSTRUCTIONS AT A GLANCE

4.2 16-Bit Arithmetic

Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
ADC HL,rr HL<HL+rr+CF $t gt 22 vFt 0 (' 11 101 101 ED 2B 4 15 rrIx
01 rrl 010 .. BC 00
DE 01
SBC HL,rr HL«HL-rr-CF gt 22 vPt 1 (' 11 101 101 ED 28 4 15 HL 10
01 rr0 010 .. P11
ADD HL,rr HL<—HL+rr - - 12 - 0 3t 00rr1o001 .. 18 3 11
ADD IX,pp IXIX+pp - - 32 - 0 ' 11011 101 DD 28 4 15 PP PP
00 ppl 001 .. BC 00
PP DE 01
ADD IY,qq IV IV+qq - - 12 - 0 ' 11111101 FD 28 4 15 IX 10
00 gqq1 001 .. Sp 11
INC rr rrerr+l - - - - - - 00rr0011 .. 18 1 6
INC IX IXeIX+1 - - - - - - 11011 101 DD 28 2 10 9149
00 100 011 23 BC 00
DE 01
INC IY IV I¥+1 - - - - - - 11111 101 FD 28 2 10 1IY¥ 10
00 100 011 23 5P 11
DEC rr rrerr-1 - - - - - - 00rr1011 .. 18 1 6
DEC IX IXeIX-1 - - - - - - 11011101 DD 28 2 10
00 101 011 2B
DEC IY IYeI¥-1 - - - - - - 11111 101 FD 28 2 10

00 101 011 2B

Notes: !Flag is set by carry from bit 15
2Flag is set by carry from bit 11 (half carry in high byte)

102

CHAPTER 4. INSTRUCTIONS AT A GLANCE

4.3 8-Bit Load

Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
LD r,r’ rer’ - - - = = = 01 krdkrd .. 1B 1 4 T kre
T’ ke
LD p,p’ p<p’ - - - - - - 11 011 101 DD 2B 2 8 B 000
01 kp~ kp™ C 001
D 010
LD q,q’ geq’ - - - - - - 11111101 FD 28 2 8 E out
01 kgl kg~ H 100
L 101
LD r,n ren - - - - - - 00 kr+ 110 .. 2B 2 7 A 111
om -
LD p,n p<n - - - - - - 11011 101 DD 38 3 11 P kp
00 kp+ 110 B ten
B 000
e c ool
LD g,n qen - - - - - - 11111 101 FD 38 3 11 g 812
00 kq+ 110 .. %, 100
k---n--- .. IX; 101
A 111
LD r, (HL) r«(HL) - - - - - - 01 kr- 110 .. 1B 2 7
LD r, (IX+d) r(IX+d) - - - - - - 11011 101 DD 38 5 19 q ko
01 kx4 110 7]‘31’ ';%;'
k---d-- ¢ ool
LD r, (IY+d) T (IY+d) - - - - - - 11111101 FD 38 5 19 g gi‘l)
01 krs 110 .. ¥, 100
k---d--- .. IY; 101
A 111
LD (HL),r (HL) «—r - - - - = = 01110 koA .. 1B 2 7
LD (IX+d),r (IX+d) «r - - - - - - 11 011 101 DD 3 5 19
01 110 kr~
k---d--—
LD (IY+d),r (IY+d) <1 - - - - - - 11111 101 FD 38 b5 19
01 110 kr-f
k---d---o
LD (HL),n (HL) «n - - - - - - 00110 110 36 2B 3 10
k---n---o
LD (IX+d),n (IX+d)«n - - - - - - 11011 101 DD 48 5 19
00 110 110 36
k---d--—
k---n---
LD (IY+d),n (IY+d)«n - - - - - - 11 111 101 FD 4B 5 19
00 110 110 36
k---d---A
k---n---
LD A, (BC) A—(BC) - - - - - - 00001010 OA 1B 2 7
LD A, (DE) A« (DE) - - - - - - 00011 01 1A 1B 2 7
LD A, (nm) A—(nm) - - - - - - 00111 010 3A 3B 4 13
k---m---o
k---n---

(continued on next page)

103

CHAPTER 4. INSTRUCTIONS AT A GLANCE
Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
LD (BC),A (BC) A - - - - - - 00000010 02 1B 2 7
LD (DE),A (DE)«A - - - - - - 00010010 12 18 2 7
LD (nm),A (nm) «—A - - - - - - 00110 010 32 38 4 13
ko m -
ke oo
LD A,T A1 ! ¢ O we O - 11 101 101 ED 28 2 9
01 010 111 57
LD A,R A<R ! ¢ O we O - 11101 101 ED 28 2 9
01 011 111 5F
LD I,A I—A - - - - - - 11101 101 ED 2B 2 9
01 000 111 47
LD R,A R<A - - - - - - 11101 101 ED 2B 2 9
01 001 111 4F
4.4 General-Purpose Arithmetic and CPU Control
Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
DAA $ t § PF - 1 00100111 27 15 1 4
CPL AR - -1 - 1 - 00101 111 2F 18 1
NEG AeA $ 1 § PF 1] 11101101 ED 28 2 8
01 000 100 44
CCF! CFe CF - - 2 - 0 1 00111111 3F 18 1 4
SCF? CF«1 - - 0 - 0 1 00110 111 37 18 1 4
NOP - - - - - - 00000000 00 1B 1 4
HALT - - - - - - 01110110 76 18 1 4
DI IFF1<-0 - - - - - - 11110011 F3 18 1 4
IFF2¢-0
EI3 IFFle1 - - - - - - 11111011 FB 18 1 4
IFF21
IM 0% - - - - - - 11101 101 ED 2B 2 8
01 000 110 46
M 1% - - - - - - 11101 101 ED 2 2 8
01 010 110 56
M 24 - - - - - - 11 101 101 ED 2B 2 8
01 011 110 bE

Notes:

IYF and XF are copied from register A
2Documentation says original value of CF is copied to HF, but my tests show that HF remains unchanged

3No interrupts are accepted directly after EI or DI
4This instruction has other undocumented opcodes

104

CHAPTER 4. INSTRUCTIONS AT A GLANCE
4.5 16-Bit Load
Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
LD rr,nm rr<nm - - - - = = 00 rx0 001 38 3 10 Ir Ir
e--n---o o
k---n--- HL 10
LD IX,nm IXenm - - - - - - 11011101 DD 48 4 14 SP
00 100 001 21
k---m -
emn -
LD IY,nm IX<nm - - - - - - 11 111 101 FD 48 4 14
00 100 001 21
e m -
om -
LD HL, (nm) He (nm+1) - - - - - - 00101010 2A 38 b5 16
L< (nm) k---m --->
L
LD rr, (nm) T (nm+1) - - - - - - 11 101 101 ED 48 6 20
rri <« (am) 01 rr1 011
k---m---o
k---n---o
LD IX, (nm) IXp« (nm+1) - - - - - - 11 011 101 DD 4 6 20
IX; < (nm) 00 101 010 2A
k---m---o
k---n---o
LD IY, (nm) IV« (nm+1) - - - - - - 11 111 101 FD 48 6 20
IY; < (nn) 00 101 010 2A
k---n---
k---n---o
LD (am),HL (nn+1) «H - - - - - - 00100010 22 3B b5 16
(om) L k---m ---»
k---n---
LD (am),rr (nm+1) «rry - - - - - = 11 101 101 ED 48 6 20
(nm) <—rr; 01 rr0O 011
k---m---
k---n---
LD (nm),IX (nm+1) «IXy - - - - - = 11 011 101 DD 48 6 20
(nm) «IX; 00 100 010 22
k---m---o
k---n---
LD (nm),IY (nm+1) «IYy - - - - - - 11 111 101 FD 48 6 20
(nm) «IY; 00 100 010 22
k---m---o
k---n---o
LD SP,HL SP«HL - - - - - - 11 111 001 F9 1B 1 6
LD SP,IX SP«IX - - - - - - 11 011 101 DD 28 2 10
11 111 001 F9
LD SP,IY SP«IY - - - - - - 11 111 101 FD 28 2 10
11 111 001 F9

105

CHAPTER 4. INSTRUCTIONS AT A GLANCE

4.6 Stack
Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
POP pp PPne(SP+1) - - - - - - 11pp0001 .. 18 3 10 PP PP
- BC 00
pP1(SP) DE 01
SP«SP+2 HL 10
POP AF A (8P+1) vt ottt gt gt 11 110 001 F1 13 3 10
F«(SP)
SP«SP+2
POP IX IXn<«— (SP+1) - - - - - - 11011 101 DD 2B 4 14
IX;«(SP) 11 100 001 E1
SP«SP+2
POP IY IV« (SP+1) - - - - - - 11 111 101 FD 2B 4 14
IY;<(SP) 11 100 001 E1
SP«SP+2
PUSH rr (SP-2) «rr; - - - - - - 11 rr0 101 .. 18 3 11 Irr rr
1y BC 00
(SP-1) «rrp DE o1
SP«SP-2 HL 10
PUSH IX (SP-2)«IX; - - - - - - 11011101 DD 28 4 15 AF 1
(8P-1) «IXp 11 100 101 E5
SP«SP-2
PUSH IY (8P-2) «1IY; - - - - - - 11 111 101 FD 2B 4 15
(8P-1) «1IYy 11 100 101 E5
SP«SP-2
Notes: !Flags set directly to low 8-bits of the value from stack SP
4.7 Exchange
Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
EX AF,AF’ AFAF? ol ol o' o' o' o' 00001000 08 1B 1 4
EX DE,HL DE<«>HL - - - - - - 11101011 EB 1B 1 4
EX (SP),HL He> (SP+1) - - - - - - 11100 011 E3 18 5 19
L<>(SP)
EX (SP),IX IXp <> (SP+1) - - - - - - 11011 101 DD 2B 6 2
IX; > (SP) 11 100 011 E3
EX (SP),IY IYn <> (SP+1) - - - - - - 11 111 101 FD 2B 6 23
IY;<«>(SP) 11 100 011 E3
EXX BC—BC’ - - - - - - 11 011 001 D9 1B 1 4
DE—DE’
HL<HL’

Notes: !Flags set directly from the value of F’

106

CHAPTER 4. INSTRUCTIONS AT A GLANCE
4.8 Bit Set, Reset and Test
Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
BIT b,r ZF— T3 ?t 34 1 7Y 0 - 11001011 CB 28 2 8 T krs
01 Kb kr- B 000
C 001
BIT b, (HL) ZF< (HL)p ?t ¢ 1 ?r 0 - 11001011 CB 28 3 12 D o010
E 011
01 Kb+ 110 i 100
BIT b, (IX+d)? zFe (IX +d)p ?t 34 1 7 0 - 11011 101 DD 48 5 20 L 101
11 001 011 CB A 111
k---d---o
01 Kb+ 110
BIT b, (IY+d)?2 zF— (IY + d)p ?t 3 1 7Y 0 - 11 111 101 FD 4 5 20 Db kb
11 001 011 CB 0 000
1 001
oo d oo 2 ot0
01 Kb+ 110 3 o1t
4 100
SET b,r Tp 1 - - - - - - 11001011 CB 28 2 8 5 101
1] kb e 6 110
7 111
SET b, (HL) (HL)p 1 - - - - - - 11001011 CB 28 4 15
1] kb~ 110
SET b, (IX+d) (IX + d)p 1 - - - - - - 11011 101 DD 48 6 23
11 001 011 CB
k---d---A
A1l kb 110
SET b, (IY+d) (IY + d)p 1 - - - - - - 11111 101 FD 48 6 23
11 001 011 CB
k---d--—f
11 kb 110
SET b, (IX+d) ,r r(IX+d) - - - - - - 11011 101 DD 48 6 23
Tp <1 11 001 011 CB
(IX+d) 1 k---d ---
1] kb k-
SET b, (IY+d) ,,r re(IY+d) - - - - - - 11111 101 FD 48 6 23
Tp <1 11 001 011 CB
(IY+d) <t k---d --->
1] kb ber-
i
RES b,m? my <0 - - - - - - [J...
Notes: !See section ?? for complete description

2Instruction has other undocumented opcodes
3m is one of r, (HL), (IX+d), (IY+d). To form RES instruction, replace with [10].

Ts also the same

107

CHAPTER 4. INSTRUCTIONS AT A GLANCE
4.9 Rotate and Shift
Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
RLC T [7—op] 3 O PF 0 7 11001011 CB 28 2 8 T ke
B 000
00 kel ¢ 001
RLC (HL) 70 $ § O PF O { 11001011 CB 28 4 15 Dgig
E
00 110 06 H 100
RLC (IX+d) ! ¢ 0 PF O § 11011101 DD 48 6 23 1%
11 001 011 CB
k---d---o ..
00 110 06
RLC (IY+d) 7o $ ¢ O PF O { 11 111 101 FD 48 6 23
11 001 011 CB
kom-d --- ..
00 110 06
RLC T, (IX+d) re (IX+d) $ ¢ O PF O { 11 011 101 DD 48 6 23
RLC r 11 001 011 CB
(IX+d) 1 k---d ---»
00 Pr
RLC r, (IY+d) re (IY+d) $ ¢ O PF O { 11 111 101 FD 48 6 23
RLC r 11 001 011 CB
(IY+d) <1 k---d ---»
00 kel
7
RRC m! 750 ! § 0 PF 0 3 . [oo1] ...
RL m! 7<0 $ 7 0O PF 0O 1 ..[010..
RR m! 7ot ricr! ! ¢t o0 PF 0 1
SLA m! [CF]+{7<=0l+-0 ! 3 o PF O 1
SRA m! 7—0 $ 7 0 PF 0 3 . ..
SLI m!? [CE]+{7<0l+1 $ 3 0 PF 0 3 110
SRL m! 070 ! § 0 PF 0 3 111
SLL m?®
RLA (eR7=0 - - 0 - 0 ! 00010 111 17 1B 1 4
RLCA = - - 0 - 0 ! 00000111 07 1B 1 4
RRA s 7=0r>[cr - - 0 - 0 } 00011 111 IF 18 1 4
RRCA Ny= - - 0 - 0 ! 00001111 OF 1B 1 4
RLD A[7=4[3-0 (HL) $ § O PF O - 11 101 101 ED 28 5 18
01 101 111 6F
RRD A[7T=4[3-0 (HL) $ § O PF 0O - 11 101 101 ED 28 5 18
01 100 111 67
Notes: 'm is one of r, (HL), (IX+d), (IY+d). To form new opcode replace of RLCs with shown code. Ts also the same

2Some assemblers may also allow SL1 to be used instead of SLI

3Shift Left Logical; no associated opcode, there is no difference between logical and arithmetic shift left, use SLA for
both. Some assemblers will allow SLL as equivalent, but unfortunately some will assemble it as SLI, so it’s best avoiding

108

CHAPTER 4. INSTRUCTIONS AT A GLANCE

4.10 Jump

Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
JP mm PCenm - - - - - - 11000011 C3 38 3 10 _ .y
k---m---> .. NZ 000
k---m--- .. z 001
NC C10
JP (HL) PC«HL - - - - - - 11101001 E9 18 1 4 Cc o011
PO 100
JP (IX) PCTX - - - - - - 11011101 DD 28 2 8 g 101
11 101 001 E9 P 110
Mo111
JP (IY) PC«IY - - - - - - 11 111 101 FD 2B 2 8
11 101 001 E9
JP c,nm if c=true: JP mm - - - = - - 114010 .. 38 3 10 22
|'("_m _'_)'l .. Z 01
k---n--- .. NC 10
c 11
JR e PC«PC+e - - - - - - 00011 000 18 2B 3 12
o 02 -
JR p,e if p=true: JR e - - - - - - 001pp 000 .. 28 2 7 ifp=false
k--e-2 -5 3 12 if p=true
DJINZ e B«B-1 - - - - - - 00010000 10 2B 2 8 ifB=0
if B#0: JR e k--e-2 -3 3 13 ifB#0

Notes: e is a signed two-complement in the range -127, 129.
e-2 in the opcode provides an effective number of PC+e as PC is incremented by two prior to the addition of e.

109

CHAPTER 4.

INSTRUCTIONS AT A GLANCE

4.11 Call and Return

Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
CALL nm (SP-1) «PCy - - - - - - 11 001 101 CD 38 b5 17
(SP-2) «—PCy k---m--->
SP«SP-2 k---n ---»
PC<«—nm
CALL c,nm if c=true: CALL nm - - - - = = 11 kc+ 100 38 3 10 if c=false
k---m---> 5 17 if c=true
en -
RET PCy <« (SP) - - - - = = 11 001 001 C9 18 3 10
PCp <« (SP+1)
SP«SP+2
RET c if c=true: RET - - - - - - 11 kc~ 000 1B 1 5 if c=false
3 11 if c=true
RETI! PCy <« (SP) - - - - = - 11 101 101 ED 2B 14 c ke
PCp« (SP+1) 01 001 101 4D Nz 000
Z 001
SP—SP+2 NC 010
RETN? PCy < (SP) - - - - - - 11101 101 ED 28 4 14 lfo ;’(1)3
PCh—(SP+1) 01 000 101 45 PE 101
SP«SP+2 P 110
IFF1< IFF2 Mo111
RST p (SP-1) «PCy - - - - - - 11 ¢ps 111 iz 3 11 P kpA
S9) $0 000
(SP-2) «PCy $8 001
SP«SP-2 $10 010
PC«p $18 011
$20 100
$28 101
$30 110
$38 111
Notes: 1RETI also copies IFF2 into IFF1, like RETN

2This instruction has other undocumented opcodes

110

CHAPTER 4.

INSTRUCTIONS AT A GLANCE

4.12 Block Transfer, Search

Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
CPD A-(HL) 31 o2 {! e 1 - 11 101 101 ED 28 4 16
HL«HL-1 10 101 001 A9
BC«BC-1
CPDR do CPD It 2 3t e 1 - 11 101 101 ED 28 4 16 if A=(HL)
while A# (HL) ABC>0 10 111 001 B9 or BC=0
5 21 if A#(HL)
and BC#0
CPI A-(HL) gt e ' e 1 - 11101 101 ED 28 4 16
HL<«HL+1 10 100 001 A1l
BC—BC-1
CPIR do CPI It o2 ! 3 1 - 11 101 101 ED 28 4 16 if A=(HL)
while A#(HL) ABC>0 10 110 001 B1 or BC=0
5 21 if A#(HL)
and BC#£0
LDD (DE) « (HL) - - 0 & 0 - 11 101 101 ED 28 4 16
DE«DE-1 10 101 000 A8
HL<+HL-1
BC«+BC-1
LDDR do LDD - - 0 0* 0 - 11 101 101 ED 28 4 16 ifBc=0
while BC>0 10 111 000 B8 5 21 ifBC#0
LDI (DE) « (HL) - - 0 e 0 - 11 101 101 ED 2B 16
DE«DE+1 10 100 000 AO
HL«HL+1
BC«—BC-1
LDIR do LDI - - 0 0* 0 - 11101 101 ED 28 4 16 ifBC=0
while BC>0 10 110 000 BO 5 21 ifBC#0
Notes: !See section ?? for a description

27F is 1 if A=(HL), otherwise 0

3PV is 1 if BC#0 after execution, otherwise 0
4PV is 0 only at the completion of the instruction

111

CHAPTER 4. INSTRUCTIONS AT A GLANCE
4.13 Input
Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
IN A, (n)? Ae(n) - - - - - - 11011011 DB 28 3 11
k---n---> B 000
C 001
IN r,(C)? r«(BC)] 3 0 PF 0 - 11101 101 ED 28 3 12 | 010
01 kr-+ 000 E 011
H 100
IN (C)2:3 (BC) $ 3 0 PF 0 - 11101 101 ED 28 3 12 | 101
01 110 000 70 A 111
IND (HL) < (BC) o5 ot o5 ® 1 - 11 101 101 ED 28 4 16
HL<« HL-1 10 101 010 AA
B«B-1
INDR do IND e 1 o° ® 1 - 11 101 101 ED 28 4 16 ifB=0
while B>0 10 111 010 BA 5 21 ifB#0
INI (HL) < (BC) o o% o° @® 1 - 11 101 101 ED 2B 16
HL< HL+1 10 100 010 A2
B«—B-1
INIR do INI ° 1 % e® 1 - 11 101 101 ED 28 4 16 ifB=0
while B>0 10 110 010 B2 5 21 ifB#0
Notes: 1Some assemblers allow IN (n) to be used instead of IN A, (n)

2Some assemblers allow instruction to be written with (BC) instead of (C)
3Performs the input without storing the result. Some assemblers allow IN F, (C) to be used instead of IN (C)

4Flag is 1 if B=0 after execution, otherwise 0; similar to DEC B

50n Next this flag is destroyed, for other Z80 computers see section ??

4.14 Output

Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
OUT (n),A (n) <A - - - - - - 11010011 D3 28 3 11 T koo
k---n---» B 000
C 001
OuT (C),r (BC) e - - - - - - 11101 101 ED 2B 3 12 D 010
01 kr+ 001 E 011
H 100
QuT (C),0 (BC)«0 - - - - - - 11101 101 ED 2B 3 12 L 101
01 110 001 71 A 111
OUTI BB-1 o2 o' o2 2 1 - 11101 101 ED 28 4 16
(BC) «—(HL) 10 100 011 A3
HL<«HL+1
0TIR do OUTI o2 1 2 2 1 - 11101 101 ED 28 4 16 ifB=0
while B>0 10 110 011 B3 5 21 ifB#0
OUTD (BC) « (HL) o> o' o o> 1 - 11101 101 ED 28 16
HL<«HL-1 10 101 011 AB
B«B-1
OTDR do OUTD 2 1 o2 e 1 - 11101 101 ED 28 4 16 ifB=0
while B>0 10 111 011 BB 5 21 ifB#0

Notes:

1Flag is 1 if B=0 after execution, otherwise 0

20n Next this flag is destroyed, for other Z80 computers see section ?7?.

112

CHAPTER 4.

INSTRUCTIONS AT A GLANCE

4.15 ZX Spectrum Next Extended

Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
ADD rr,A rrerr+h - - - - - - 11 101 101 ED 28 2 8 Ir IT
00 110 Orr HL 01
DE 10
ADD pp,nm ppepp+nm - - - - - - 11101101 ED 28 4 16 BC 11
00 110 1pp op P
k---m---> HL 00
k---n --- DE 01
BC 10
BSLA DE,B! DE«DE<<(BA$1F) - - - - - - 11101 101 ED 2 2 8
00 101 000 28
BSRA DE,B! DE«signed(DE)... - - - - - - 11101 101 ED 2B 2 8
.. >>(BAS$1IF) 00 101 001 29
BSRL DE,B! DE<unsigned(DE)... - - - - - - 11101 101 ED 2 2 8
.. >>(BA$1IF) 00 101 010 2A
BSRF DE,B! DE«—~ (unsigned(~DE)... - - - - - - 11101 101 ED 28 2 8
..>>(BAS$IF)) 00 101 011 2B
BRLC DE,B! DE«DE<<(BA$0F or - - - - - - 11101 101 ED 2 2 8
DE«DE>>(16-BA$0F) 00 101 100 2C
JP (C) PC—PCA$CO00+IN(C)<<6 7 7 7 7 7 7 11 101 101 ED 28 3 13
10 011 000 98
LDDX if (HL)#A: (DE)«(HL) - - - - - - 11 101 101 ED 28 4 16
DE«DE+1 10 101 100 AC
HL<«HL-1
BC«—BC+1
LDDRX do LDDX - - - - - - 11101 101 ED 2B 4 16 ifBC=0
while BC>0 10 111 100 BC 5 21 ifBC#0
LDIX if (HL)#A: (DE)e(HL) - - - - - - 11 101 101 ED 2B 16
DE«DE+1 10 100 100 A4
HL«HL+1
BC«BC-1
LDIRX do LDIX - - - - - - 11101 101 ED 28 4 16 ifBC=0
while BC>0 10 110 100 B4 5 21 ifBC#0
LDPIRX do - - - - - - 11101 101 ED 2B 4 16 ifBC=0
t« (HLASFFF8+EAT) 10 110 111 B7 5 21 ifBC#0
if t#A: (DE)«-t
DE«DE+1
BC—BC-1
while BC>0
LDWS (DE) < (HL) $ 7 $ VF2 0 - 11101101 ED 28 4 16
INC L 10 100 101 A5
INC D

Notes:

LCore v2+ only

2PV set to 1 if D was $7F before increment, otherwise 0

(continued on next page)

113

CHAPTER 4. INSTRUCTIONS AT A GLANCE
Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
MIRROR A - - - - - - 11101 101 ED 2B 2 8
00 100 100 24
MUL D,E DE«<DXE - - - - - - 11101 101 ED 2B 2 8
00 110 000 30
NEXTREG n,A HwNextReg[n]«A - - - - - - 11 101 101 ED 3B 4 17
10 010 010 92
koo -
NEXTREG n,m HwNextReg[n]<m - - - - - - 11101 101 ED 38 5 20
10 010 001 91
k- -
koo -
OUTINB (BC) « (HL) ? ? 7?2 7 7 7 11 101 101 ED 2B 4 16
HL<«HL+1 10 010 000 90
PIXELAD HL«$4000... - - - - - - 11101 101 ED 38 2 8
...+((DA$C0)<<5) 10 010 100 94
...+((DA$07)<<8)
...+((DA$38)<<2)
. +(E>>3)
PIXELDN if (HLA$700)#$700 - - - - - - 11101 101 ED 38 2 8
HL<HL+256 10 010 011 93
else if (HLA$EO)#$EO
HL<«HL A $F8FF+$20
else
HL<«HL A$F81F+$800
PUSH nm (S8P-2) «m - - - - - - 11101 101 ED 38 6 23
(8P-1)¢n 10 001 010 8A
SP—SP-2 k---nl---»
i
SETAE A—unsigned($80)>>(EA7) - - - - - - 11 101 101 ED 38 2 8
10 010 101 95
SWAPNIB A[7654]3210 - - - - - - 11101 101 ED 2B 2 8
00 100 011 23
TEST n AAn ! ¢ ¢ PF 7 J 11101 101 ED 3 3 11
00 100 111 27
Notes: ! This is not mistake, nm operand is in fact encoded in big-endian

114

CHAPTER 4.

INSTRUCTIONS AT A GLANCE

4.16 Alphabetical

Symbolic Flags Opcode

Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments

ADC A,r A A+T+CF ! 2 ¢ VF 0O § 10 001 kr+ is 1 4

ADC A,n AA+n+CF $ f 3 VF 0 3 11001110 CE 28 2 7
k---n---

ADC A, (HL) A<D+ (HL) +CF $ 1 § VF 0O] 10001 110 8E 18 2 7

ADC A, (IX+d) AcA+(IX+d)+CF $ 7 ¢ VF 0 § 11011101 DD 38 5 19
10 001 110 8E
k---d---

ADC A, (IY+d) Ac A+(IY+d)+CF $ ¢ 3 VF 0o 3 11111101 FD 38 5 19
10 001 110 8E
k---d--—

ADC HL,rr HL« HL+rT+CF $ 1 § VF 0O 1 11101 101 ED 28 4 15
01 rrl1 010

ADD A,r hehir $ 1 1 VF 0 1 10 000 kr+ s 1 4

ADD A,n AA+n $ ¢ 3 VF 0 3 11000 110 C6 28 2
k---n---

ADD A, (HL) A<A+(HL) T 7 VF O 10 000 110 86 1B 2 7

ADD A, (IX+d) A<A+(IX+d) KON VF 0 11 011 101 DD 38 5 19
10 000 110 86
k---d---

ADD A, (IY+d) AcA+(IY+d) $ ¢ 3 VF 0o 3 11111101 FD 38 5 19
10 000 110 86
k---d---

ADD HL,rr HL«HL+rr - - 7 - 0 § 00crrl 001 1B 11

ADD IX,rr IXIX+rr - - ¢ - 0 ¢ 11011101 DD 2B 4 15
00 rrl1l 001

ADD IY,rr IYeIYV+rr - - ¢ - 0 ¢ 11111 101 FD 2B 4 15
00 rrl1l 001

ADD rr,Azx TTTT+A - - - - - - 11101 101 ED 2B 2 8
00 110 Orr

ADD rr,nm%* rrerr+om - - - - - - 11101 101 ED 2B 4 16
00 110 1rr
k---m---
k---n---

AND A,r A—AAT ! ¢ 1 PF 0 0O 10 100 kr+ s 1 4

AND A,n AAnn $ 1 1 PF O O 11100 110 E6 28 2 7
omn -

AND A, (HL) A—An (HL) $ f 1 PF 0 0 10 100 110 A6 2 7

AND A, (IX+d) A«AA(IX+d) ! $ 1 PF 0 O 11011 101 DD 38 5 19
10 100 110 A6
k---d--

AND A, (IY+d) A«—AA(IY+d) ! $ 1 PF 0 O 11 111 101 FD 38 5 19
10 100 110 A6
k---d---

115

CHAPTER 4. INSTRUCTIONS AT A GLANCE
Symbolic Flags Opcode
Mnemonic Operation SEF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
BIT b,r ZF < Tp ? 7 1 ? 0 - 11001011 CB 2B 2 8
01 Kb kr-f
BIT b, (HL) ZF« (HL)p, ? ¢ 1 7 0O - 11001011 CB 28 3 12
01 Kb+ 110
BIT b, (IX+d) ZF« (IX+d) ? 7 1 ? 0O - 11011 101 DD 48 5 20
11 001 011 CB
mmd -
01 Kb+ 110
BIT b, (IV+d) zF— (IY + d)p ? § 1 ? 0 - 11111101 FD 48 5 20
11 001 011 CB
e d -
01 Kb+ 110
BRLC DE,B#x DE«DE<<(BA$OF or - - - - - - 11101 101 ED 2B 2 8
DE«DE>>(16-B A $0F) 00 101 100 2C
BSLA DE,B#x DE«DE<<(BA$1F) - - - - - - 11101 101 ED 2B 2 8
00 101 000 28
BSRA DE,Bz#x DE<—signed(DE)... - - - - - - 11101 101 ED 2B 2 8
..>>(BA$1F) 00 101 001 29
BSRL DE,B#x DE«—unsigned(DE)... - - - - - - 11101 101 ED 2B 2 8
...>>(BAS1IF) 00 101 010 2A
BSRF DE,B#X DE«~ (unsigned(~DE)... - - - - - - 11101 101 ED 2B 2 8
..>>(BA$LF)) 00 101 011 2B
CALL nm (SP-1)«—PCy - - - - - - 11001101 CD 38 5 17
(SP-2) «PC; k---m --->
SP«SP-2 k---n ---»
PCe—nm
CALL c,nm if c=true: CALL nm - - - - - = 11 kc+ 100 38 3 10 if c=false
k---m---> 5 17 if c=true
ke--m -
CCF CF« CF - - - - 0 ! 00111 111 3F 1B 1 4
CP r A-r $ 1t VF 1 1 10 111 k4 1B 1 4
CP n A-n $ 7 ¢ VF 1t { 11111 110 FE 28 2
omn -
CP (HL) A-(HL) ! VP 1 J 10 111 110 BE 1B 2 7
CP (IX+d) A-(IX+d) ! VF 1 11 011 101 DD 38 5 19
10 111 110 BE
"
CP (IY+d) A-(TY+d) $ 7 § VF 1t { 11111101 FD 38 5 19
10 111 110 BE
o -

116

CHAPTER 4. INSTRUCTIONS AT A GLANCE
Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
CPD A-(HL) 7 e 1 e 1 - 11101 101 ED 28 4 16
HL<«HL-1 10 101 001 A9
BC«BC-1
CPDR do CPD ? e 3 e 1 - 11101 101 ED 28 4 16 if A=(HL)
while A# (HL) ABC>0 10 111 001 B9 or BC=0
5 21 if A#(HL)
and BC#0
CPI A-(HL) 1 o I ° 1 - 11 101 101 ED 2B 4 16
HL<«HL+1 10 100 001 A1
BC«—BC-1
CPIR do CPI 1 o ¢) 1 - 11 101 101 ED 2B 4 16 if A=(HL)
while A# (HL) ABC>0 10 110 001 B1 or BC=0
5 21 if A#(HL)
and BC#£0
CPL A— A - -1 - 1 - 00 101 111 2F 1B 1 4
DAA t ¢t § PF - 1 00100 111 27 18 1
DEC r rer-1 $ 3 § VF 1 - 00 kr+ 101 1B 1 4
DEC (HL) (HL) «<— (HL) -1 ! ¢ ¢ VF 1 - 00 110 101 35 18 3 11
DEC (IX+d) (IX+d) « (IX+d)-1 ! ¢ ¢ VF 1 - 11 011 101 DD 3B 5 19
00 110 101 35
o -
DEC (IY+d) (IY+d) « (IY+d) -1 ! ¢ ¢ VF 1 - 11 111 101 FD 3B 5 19
00 110 101 35
ko d -
DEC rr rrerr-1 - - - - - = 00rzrrl1 011 1B 1 6
DEC IX IXIX-1 - - - - = - 11 011 101 DD 2B 2 10
00 101 011 2B
DEC IY IYeIY-1 - - - - - - 11 111 101 FD 2B 2 10
00 101 011 2B
DI IFF1<0 - - - - - - 11 110 011 F3 1B 1 4
IFF2«0
DINZ e B«B-1 - - - - - - 00010 000 10 2B 2 8 ifB=0
if B#0: JR e k--e-2 - 3 13 ifB#0
EI IFF1<1 - - - - - - 11 111 011 FB 1B 4
IFF2«1
EX AF,AF’ AFoAF? e o e o e o (00001000 08 1B 1 4
EX DE,HL DE—HL - - - - = = 11 101 011 EB 1B 1
EX (SP),HL He> (SP+1) - - - - - - 11 100 011 E3 1B 5 19
L (SP)
EX (SP),IX IX, o (SP+1) - - - - - - 11 011 101 DD 2B 6 2
IX; < (SP) 11 100 011 E3
EX (Sp),IY IYp<>(SP+1) - - - - = - 11 111 101 FD 2B 6 23
IY1>(SP) 11 100 011 E3

117

CHAPTER 4. INSTRUCTIONS AT A GLANCE
Symbolic Flags Opcode
Mnemonic Operation SEF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
EXX BC+>BC’ - - - - - - 11011001 D9 1B 1 4
DE<>DE’
HL--HL’
HALT - - - - - - 01110110 76 1B 1 4
M 0* - - - - - - 11101 101 ED 2B 2 8
01 000 110 46
™ 14 - - - - - - 11 101 101 ED 2B 2 8
01 010 110 56
M 24 - - - - - - 11101 101 ED 2B 2 8
01 011 110 5E
IN A, (n) A—(n) - - - - - - 11011 011 DB 28 3 11
em -
IN r,(C) <« (BC) ! § 0O PF 0O - 11101 101 ED 28 3 12
01 kr+ 000
IN (C) (BC) ! § 0O PF 0O - 11 101 101 ED 28 3 12
01 110 000 70
INC T rer+l $ 1 3 VF 0O - 00 kr+ 100 1B 1 4
INC (HL) (HL) (HL)+1 $ t § VF 0O - 00110 100 34 1z 3 11
INC (IX+d) (IX+d) (TX+d) +1 $ § 3 VF 0 - 11011101 DD 38 5 19
00 110 100 34
ko -
INC (IY+d) (IV+d) (TY+d)+1 $ ¢t ¢ VF 0O - 11111101 FD 38 5 19
00 110 100 34
o d -
INC rr rrrr+l - - - - - = 00 rx0 011 s 1 6
INC IX IX—IX+1 - - - - - - 11 011 101 DD 2B 2 10
00 100 011 23
INC IY IV IY+1 - - - - - - 11111 101 FD 2B 2 10
00 100 011 23
IND (HL) « (BC) e o o e 1 - 11101 101 ED 2B 4 16
HL«HL-1 10 101 010 AA
B«B-1
INDR do IND e 1 e o 1 - 11 101 101 ED 28 4 16 ifB=0
while B>0 10 111 010 BA 5 21 ifB#0
INI (HL) « (BC) e o o o 1 - 11 101 101 ED 2B 16
HL<«HL+1 10 100 010 A2
B«—B-1
INIR do INI e 1 e e 1 - 11 101 101 ED 2B 4 16 ifB=0
while B>0 10 110 010 B2 5 21 ifB#0
JP nm PC<—mm - - - - - - 11000011 C3 38 3 10
o m -
koo -

118

CHAPTER 4. INSTRUCTIONS AT A GLANCE
Symbolic Flags Opcode
Mnemonic Operation SEF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
JP (HL) PC«HL - - - - - - 11101001 E9 1B 1 4
JP (IX) PC«IX - - - - - - 11011 101 DD 2B 2 8
11 101 001 E9
JP (IY) PCIY - - - - - - 11 111 101 FD 2B 2 8
11 101 001 E9
Jp (C)=zx PC<—PCA$CO00+IN(C)<<6 ? ? 7 7 7 7 11 101 101 ED 28 3 13
10 011 000 98
JP c,nm if c=true: JP nm - - - - - - 11 kc+ 010 3B 3 10
e m -
e
JR e PC«PC+e - - - - - - 00011 000 18 2B 3 12
k--e-2 -
JR c,e if c=true: JR e - - - - - = 00 1cc 000 2B 2 7 if p=false
k--e-2 -5 3 12 if p=true
LD r,r’ rer’ - - = = = = 01 krs kr> 1B 1 4
LD r,n r<n - - - - - - 00 kr+ 110 2B 2 7
omn -
LD r, (HL) <« (HL) - - - - - - 01+ 110 1B 2 7
LD r, (IX+d) T (IX+d) - - - - - - 11 011 101 DD 38 5 19
01 kr+ 110
k---d---
LD r, (IY+d) < (IY+d) - - - - - - 11 111 101 FD 38 5 19
01 kr+ 110
k---d--—
LD (HL),r (HL) «—r - - - - = = 01110 krA 1B 2 7
LD (IX+d),r (IX+d) < - - - - - - 11011 101 DD 38 b5 19
01 110 kxH
k---d--—
LD (IY+d),r (IY+d) - - - - - - 11111 101 FD 38 5 19
01 110 kr-f
k---d ---
LD (HL),n (HL) «n - - - - - - 00110 110 36 28 3 10
k---n---
LD (IX+d),n (IX+d)«n - - - - - - 11011 101 DD 48 5 19
00 110 110 36
k---d ---
k---n---f
LD (IY+d),n (IY+d)«n - - - - - - 11 111 101 FD 48 5 19
00 110 110 36
k---d ---
k---n---f
LD (BC),A (BC) <A - - - - - - 00000010 02 18 2 7
LD (DE),A (DE)«A - - - - - - 00010 010 12 1B 7
LD (am),A (nm) <A - - - - - - 00110010 32 3B 4 13
k---m--—
k---n---

119

CHAPTER 4. INSTRUCTIONS AT A GLANCE
Symbolic Flags Opcode
Mnemonic Operation SEF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
LD A, (BC) A—(BC) - - 00 001 010 OA 1B 2 7
LD A, (DE) A< (DE) - - 00 011 01 1A 1B 2 7
LD A, (nm) A (nm) - - 00 111 010 3A 3B 4 13
e m -
emn -
LD A,T AT) IFF2 11 101 101 ED 2 2 9
01 010 111 57
LD A,R AR) IFF2 11 101 101 ED 2B 2 9
01 011 111 b5F
LD I,A I<A - - 11 101 101 ED 2 2 9
01 000 111 47
LD R,A R—A - - 11 101 101 ED 2B 2 9
01 001 111 4F
LD rr,nm rr<-nm - - 00 rr0O 001 38 3 10
e m -
e
LD IX,nm IX«nm - - 11 011 101 DD 48 4 14
00 100 001 21
e m -
L
LD IY,nm IX«enm - - 11 111 101 FD 48 4 14
00 100 001 21
e m -
L
LD SP,HL SP«HL - - 11 111 001 F9 1B 1 6
LD SP,IX SPIX - - 11 011 101 DD 2B 2 10
11 111 001 F9
LD SP,IY SP«1IY - - 11 111 101 FD 2B 2 10
11 111 001 F9
LD HL, (nm) He (nm+1) - - 00 101 010 2A 38 5 16
L« (nm) k---m--->
L
LD rr, (nm) rrp< (nm+1) - - 11 101 101 ED 48 6 20
rri <« (nm) 01 rr1 011
o m -
e
LD IX, (nm) IXp« (nm+1) - - 11 011 101 DD 48 6 20
IX; < (nm) 00 101 010 2A
k---m---
k---n---
LD IY, (nm) IYp<— (nm+1) - - 11 111 101 FD 48 6 20
IY; < (nn) 00 101 010 2A
k---n---
k---n---

120

CHAPTER 4. INSTRUCTIONS AT A GLANCE
Symbolic Flags Opcode
Mnemonic Operation SEF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
LD (nm),HL (nn+1) «H - - - - - - 00100 010 22 3B b5 16
(nm) <L k---m--->
koo -
LD (nm),rr (nm+1) «rry - - - - - - 11 101 101 ED 4B 6 20
(nm) «rry 01 rr0O 011
k- -
koo -
LD (nm),IX (nm+1) «IXy - - - - - - 11 011 101 DD 48 6 20
(nm) «IX; 00 100 010 22
ko= -
koo -
LD (nm),IY (nm+1) «IYy - - - - - - 11 111 101 FD 48 6 20
(om) «IY; 00 100 010 22
ko= -
koo -
LDD (DE) < (HL) - - 0 e 0 - 11 101 101 ED 2B 4 16
DE«DE-1 10 101 000 A8
HLHL-1
BC«BC-1
LDDR do LDD - - 0 0 o0 - 11 101 101 ED 2B 4 16 ifBC=0
while BC>0 10 111 000 B8 5 21 ifBC#0
LDDX2%X if (HL)#A: (DE)«(HL) - - - - - - 11 101 101 ED 2B 16
DE«DE+1 10 101 100 AC
HL<«HL-1
BC«BC+1
LDDRX?%x do LDDX - - - - - - 11101 101 ED 2B 4 16 ifBC=0
while BC>0 10 111 100 BC 5 21 ifBC#0
LDI (DE) < (HL) - - 0 e 0 - 11 101 101 ED 2B 16
DE<DE+1 10 100 000 AO
HL«HL+1
BC«BC-1
LDIR do LDI - - 0 0 o - 11 101 101 ED 2B 4 16 ifBC=0
while BC>0 10 110 000 BO 5 21 ifBC#0
LDIX%X if (HL)#A: (DE)<«(HL) - - - - - - 11 101 101 ED 2B 16
DE«DE+1 10 100 100 A4
HLHL+1
BC«BC-1
LDIRX%X do LDIX - - - - - - 11 101 101 ED 2B 4 16 ifBC=0
while BC>0 10 110 100 B4 5 21 ifBC#0
LDPIRX%X do - - - - - = 11 101 101 ED 2B 4 16 ifBC=0
t«— (HLASFFFS+EAT) 10 110 111 B7 5 21 ifBC#0
if t#A: (DE)«t
DE<«DE+1
BC«BC-1
while BC>0
LDWSZX (DE) < (HL) $ 7 ¢ VF 0O - 11101 101 ED 28 4 16
INC L 10 100 101 A5
INC D

121

CHAPTER 4. INSTRUCTIONS AT A GLANCE
Symbolic Flags Opcode
Mnemonic Operation SEF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
MIRROR A - - - - - - 11101 101 ED 2 2 8
A[7654[3210] 00 100 100 24
MUL DLE DE«DXE - - - - - - 11101 101 ED 2B 2 8
00 110 000 30
NEG Ae-h $ ¢ 3 PF 1 3} 11101101 ED 28 2 8
01 000 100 44
NEXTREG n,A HwNextReg[n] <A - - - - - - 11101 101 ED 3B 4 17
10 010 010 92
mn -
NEXTREG n,m HuNextReg[n] <m - - - - - - 11101 101 ED 38 b5 20
10 010 001 91
k---n--—f
k---m---
NOP - - - - - - 00000000 00 18 1 4
OR r AeAvr $ 7 0 PF 0 0 10 110 kr+ 15 1 4
OR n A—Avn $ 1 0 PF O O 11110 110 F6 28 2 7
kemn -
OR (HL) A—Av (HL) ! ¢ O PF O O 10 110 110 B6 1B 2 7
OR (IX+d) AeAv (IX+d) $ f 0O PF 0 O 11011101 DD 38 5 19
10 110 110 B6
e
OR (IY+d) A—Av (IY+d) ! § 0O PF O O 11 111 101 FD 38 5 19
10 110 110 B6
k---d---
OTDR do OUTD e 1 e e 1 - 11 101 101 ED 2B 4 16 ifB=0
while B>0 10 111 011 BB 5 21 ifB#0
O0TIR do OUTI e 1 e e 1 - 11 101 101 ED 2B 4 16 ifB=0
while B>0 10 110 011 B3 5 21 ifB#0
OUT (n),A (n) A - - - - - - 11010011 D3 28 3 11
omn -
ouT (C),r (BC) «r - - - - - - 11101 101 ED 2 3 12
01 kr+ 001
ouT (C),0 (BC)«0 - - - - - - 11101 101 ED 2B 3 12
01 110 001 71
0UTD (BC) «— (HL) e e e o 1 - 11 101 101 ED 2B 4 16
HL«HL-1 10 101 011 AB
B«B-1
OUTI B«B-1 e e o o 1 - 11 101 101 ED 2B 4 16
(BC) « (HL) 10 100 011 A3
HLHL+1
OUTINBZ#* (BC) «(HL) ? ? ? 7 7 7 11 101 101 ED 2B 4 16
HL<«HL+1 10 010 000 90

122

CHAPTER 4. INSTRUCTIONS AT A GLANCE
Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
PIXELADZX HL<«$4000... - - - - - - 11 101 101 ED 3B 2 8
...+((DA$CO)<<5) 10 010 100 94
...+((DA$07)<<8)
...+((DA$38)<<2)
A+ (E>>3)
PIXELDNZx if (HLA$700)#$700 - - - - - - 11 101 101 ED 3B 2 8
HL<-HL+256 10 010 011 93
else if (HLA$EO) #$EO0
HL«HL A $F8FF+$20
else
HL«—HL A $F81F+$800
POP rr rry« (SP+1) - - - - - - 11 rr0 001 1B 3 10
rri < (SP)
SP«SP+2
POP AF A< (SP+1) $ 1 3 3 ¢ % 11110001 F1 18 3 10
F« (SP)
SP«SP+2
POP IX IXp«— (SP+1) - - - - = - 11 011 101 DD 2B 4 14
IX1<(SP) 11 100 001 E1
SP«—SP+2
POP IY IYp<(SP+1) - - - - - - 11 111 101 FD 2B 4 14
1Y, «(SP) 11 100 001 E1
SP«SP+2
PUSH rr (SP-2) <113 - - - - - - 11 rr0 101 i1z 3 11
(SP-1) «rr}y
SP«—SP-2
PUSH IX (8P-2) «IX; - - - - = = 11 011 101 DD 2B 4 15
(SP-1) «IXy 11 100 101 E5
SP«SP-2
PUSH 1Y (SP-2) «1IY; - - - - - - 11 111 101 FD 2B 4 15
(SP-1) «1IYy 11 100 101 E5
SP«SP-2
PUSH nmZ%X (SP-2)«m - - - - - - 11 101 101 ED 3B 6 23
(SP-1)«n 10 001 010 8A
SP«SP-2 k---n ---»
e m -
RES b,r rp <0 - - - - - - 11 001 011 CB 2B 2 8
10 Kb~ kI
RES b, (HL) (HL)p «0 - - - - - = 11 001 011 CB 28 4 15
10 Kb~ 110
RES Db, (IX+d) (IX +d)p <O - - - - - - 11 011 101 DD 48 6 23
11 001 011 CB
k---d ---
10 Kb~ 110
RES Db, (IY+d) (IY +d) <O - - - - - - 11 111 101 FD 48 6 23
11 001 011 CB
k---d --->
10 Kb+ 110

123

CHAPTER 4. INSTRUCTIONS AT A GLANCE
Symbolic Flags Opcode
Mnemonic Operation SF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
RET PCy <« (SP) - - - - - - 11001001 CO 18 3 10
PCp«—(SP+1)
SP«SP+2
RET c if c=true: RET - - - - = - 11 kc 000 1B 1 5 if c=false
3 11 if c=true
RETI PCy1«(SP) - - - - - - 11 101 101 ED 2B 14
PCh<—(SP+1) 01 001 101 4D
SP«SP+2
RETN PC;«(SP) - - - - - - 11 101 101 ED 2B 4 14
PCp«—(SP+1) 01 000 101 45
SP—SP+2
IFF1<IFF2
RL [CF)«—{7+=0 1 7 0O PF O § 11001011 CB 28 2 8
00 010 kr~f
RL (HL) 7<0 ! § 0O PF 0 J 11001011 CB 28 4 15
00 010 110 16
RL (IX+d) 70 1 7 0 PF O { 11011101 DD 48 6 23
11 001 011 CB
k---d--- ..
00 010 110 16
RL (IY+d) 70 ! § 0o PF 0 11 111 101 FD 48 6 23
11 001 011 CB
k---d--- ..
00 010 110 16
RLA 7<0 - - 0 - 0 § 00010 111 17 1B 1 4
RLC crl7—o $ $ 0 PF O] 11001011 CB 28 2 8
00 000 kr+
RLC (HL) 7<0 ! § 0O PF 0 J 11001011 CB 28 4 15
00 000 110 06
RLC (IX+d) 70 £ t 0 PF O] 11011 101 DD 48 6 23
11 001 011 CB
k---d--- ..
00 000 110 06
RLC (IY+d) 70 $ t 0o PF O 1 11111 101 FD 48 6 23
11 001 011 CB
k---d--- ..
00 000 110 06
RLCA 70 - - 0 - 0 § 00000111 07 1B 1 4
RLD A[7-4]3-0 7—(HL) ! § 0O PF 0O - 11101 101 ED 28 b5 18
01 101 111 6F
[
RRD A(HL) {1 7 0 PF 0O - 11101 101 ED 28 5 18
01 100 111 67

124

CHAPTER 4. INSTRUCTIONS AT A GLANCE
Symbolic Flags Opcode

Mnemonic Operation SEF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments

RR T 70~[CF] $ f 0O PF 0 3} 11001011 CB 28 2 8
00 011 kr+

RR (HL) 7—0 ! § 0O PF 0 J 11001011 CB 28 4 15
00 011 110 1E

RR (IX+d) 750 $ f 0 PF 0 3} 11011 101 DD 48 6 23
11 001 011 CB
k---d--- ..

00 011 110 1E

RR (IY+d) 750 {1 7 0 PF O ${ 11 111 101 FD 48 6 23
11 001 011 CB
k---d--- ..

00 011 110 1E

RRA 7—0 - - 0 - 0 { 00011 111 1F 1B 1 4

RRC T 7—0H>(CF] $ f O PF 0 3 11001011 CB 28 2 8
00 001 kr+

RRC (HL) 7—0 ! § 0O PF 0 J 11001011 CB 28 4 15
00 001 110 OE

RRC (IX+d) 750 £ 1 0 PF O 1 11011 101 DD 48 6 23
11 001 011 CB
k---d--- ..

00 001 110 OE

RRC (IY+d) 750 $ f 0 PF 0 3} 11 111 101 FD 48 6 23
11 001 011 CB
k---d--- ..

00 001 110 OE
RRCA 7—0 - - 0 - 0 { 00001111 OF 1B 1 4
RST n (SP-1) «—PCy - - - - - - 11 ¢+ 111 s 3 11
(SP-2) «PC;
SP«SP-2
PCen

SBC A,r A<A-r-CF OB VF 1 10 011 kr~ s 1 4

SBC A,n A<A-n-CF ORI VF 1 11 011 110 DE 2B 2
om -

SBC A, (HL) A«A-(HL) ~CF $ ¢ 3 VF 1t 3 10011 110 9E 18 2 7

SBC A, (IX+d) AcA-(IX+d)-CF $ ¢ 3 VF 1 3 11011101 DD 38 5 19
10 011 110 OSE
o d -

SBC A, (IY+d) A«A-(IV+d)-CF $ ¢ 3 VF 1t 3} 11111101 FD 38 5 19
10 011 110 OSE
ko d -

SBC HL,rr HL<«HL-rr-CF ! ¢ ¢ VF 1 ¢ 11101 101 ED 2B 4 15
01 rr0 010

SCF CF«1 - - 0 - 0 1 00110111 37 18 1 4

125

CHAPTER 4. INSTRUCTIONS AT A GLANCE
Symbolic Flags Opcode

Mnemonic Operation SEF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments

SET b,r 1 - - - - - - 11001011 CB 28 2 8
11 kb krof

SET b, (HL) (HL)p «1 - - - - - - 11001 011 CB 28 4 15
11 Kb 110

SET b, (IX+d) (IX+d)p «1 - - - - - - 11011 101 DD 48 6 23
11 001 011 CB
k---d---o
11 Kb+ 110

SET b, (I¥+d) (IY +d)s <1 - - - - - - 11111 101 FD 48 6 23
11 001 011 CB
k---d---o
11 Kb 110

SETAE A—unsigned($80)>>(EA7) - - - - - - 11 101 101 ED 38 2 8
10 010 101 95

SLA r [CFl+{7<0}+-0 $ ¢ 0O PF O § 11001011 CB 28 2 8
00 100 kr+

SLA (HL) 7<01+-0] 3 0O PF 0 7 11001011 CB 28 4 15
00 100 110 26

SLA (IX+d) 70«0 $ 3 0 PF 0 J 11011 101 DD 48 6 23
11 001 011 CB
ke--d--- ..
00 100 110 26

SLA (IY+d) 700 $ ¢ O PF O { 11 111 101 FD 48 6 23
11 001 011 CB
ke-md--of L.
00 100 110 26

SLI r [CEl+—{70]«1 { J O PF 0O J 11001011 CB 28 2 8
00 110 k-

SLI (HL)™ 701 $ § O PF O § 11001011 CB 28 4 15
00 110 110 36

SLI (IX+d)™" 701 $ § O PF O { 11 011 101 DD 48 6 23
11 001 011 CB
k---d--- ..
00 110 110 36

SLI (IY+d)™" [CE{7=0}+1 $ 7 0 PF O § 11 111 101 FD 48 6 23
11 001 011 CB
ke--d --- ..
00 110 110 36

126

CHAPTER 4. INSTRUCTIONS AT A GLANCE
Symbolic Flags Opcode

Mnemonic Operation SEF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments

SRA r 7—0F+{CF] $ ¢ O PF O § 11001011 CB 28 2 8
00 101 kr~

SRA (HL) =0 $ ¢ O PF O § 11001011 CB 28 4 15
00 101 110 2E

SRA (IX+d) =0 $ ¢ O PF O { 11 011 101 DD 48 6 23
11 001 011 CB
kemmd --oo ..
00 101 110 2E

SRA (IY+d) =0 $ § O PF O { 11 111 101 FD 48 6 23
11 001 011 CB
kemmd --oo ..
00 101 110 2E

SRL r 0-+7—=0l~(CF] 7 ¢ 0O PF 0 § 11001011 CB 28 2 8
00 111 pr~

SRL (HL) 0—+[7—0}~(CF] $ § O PF O § 11001011 CB 28 4 15
00 111 110 3E

SRL (IX+d) 0—>[7=0l+{CF| $ 7 0O PF O { 11011 101 DD 48 6 23
11 001 011 CB
kemmd --oo ..
00 111 110 3E

SRL (IY+d) 0—>{7T—0}-+{CF] $ 3 0 PF 0O | 11 111 101 FD 48 6 23
11 001 011 CB
kemmd --o¥ ..
00 111 110 3E

SUB r AeA-r $ 2 1 VF 1 3§ 10 010 kr+ 1B 1 4

SUB n A<A-n $ 7 ¢ VF 1 { 11010 110 D6 28 2
k---n---

SUB (HL) A—A-(HL) $ ¢ ¢ VF 1 § 10010 110 96 18 2 7

SUB (IX+d) AA-(IX+d) $ 7 ¢ VF 1 { 11011101 DD 38 5 19
10 010 110 96
k---d---o

SUB (IYV+d) A—A-(IY+d) $ ¢ ¢ VF 1 { 11 111 101 FD 38 5 19
10 010 110 96
k---d---o

SWAPNIB A[7654]3210 - - - - - - 11101101 ED 28 2 8
00 100 011 23

TEST n Ann $ 7 ¢ PF ? { 11101 101 ED 3 3 11
00 100 111 27

127

CHAPTER 4. INSTRUCTIONS AT A GLANCE
Symbolic Flags Opcode

Mnemonic Operation SEF ZF HF PV NF CF 76 543 210 Hex B Mc Ts Comments
XOR T AeAvr £ 1 0 PF 0 O 10 101 kr+ 1B 1 4
XOR n A—Avn ! 0 PF 0 O 11 101 110 EE 2B 2 7

omn -
XOR (HL) A—Av (HL) ! § 0O PF 0 O 10 101 110 AE 1B 2 7
XOR (IX+d) A—Av (IX+d) ! § 0O PF 0O O 11011 101 DD 38 5 19

10 101 110 AE

mmd -
XOR (IY+d) A—Av (IY+d) ! § 0O PF 0O O 11 111 101 FD 38 5 19

10 101 110 AE

L

128

Chapter 5

Instructions up Close

The following pages describe all instructions in detail. Alphabetical order is used as much as
possible, but some deviations were made to better fit to pages. Each instruction includes:

e Mnemonic

e Symbolic operation for quick info on what instruction does
e All variants (where applicable)

e Description with further details

e Effects on flags

e Timing table with machine cycles, T states and time required for execution on different
CPU speeds

Where possible, multiple variants of same instruction are grouped together and where multiple
timings are possible, timing table is sorted from quickest to slowest.

129

Abbreviations

r 8-bit register A-L

n &8-bit immediate value

rr 16-bit register pair AF, BC, DE, HL, IX, IY, SP (note in some cases particular register pairs
may use different timing from the rest; if so, those will be explicitly indicated in their
own line; rr may still be used, though in those cases it will cover the remaining registers
only)

nn 16-bit immediate value

s Placeholder for argument when multiple variants are possible

d If instruction takes 2 operands, d indicates destination and s source
Indicates undocumented instruction
Indicates ZX Spectrum Next extended instruction

7ZX
Effects

0
1
!

N

°
Y
PV

Flag is set to 0

Flag is set to 1

Flag is modified according to operation
Flag is not affected

Effect on flag is unpredictable

Special case, see notes below effects table
P/V flag is used as overflow

P/V flag is used as parity

PV is undefined or indicates other result

130

CHAPTER 5. INSTRUCTIONS UP CLOSE
ADC d,s ADd with Carry
d«—d+s+CF
8 bit 8 bit 8 bit 8 bit 16 bit
ADC A,A ADC A,E ADC A, (HL) ADC A,IXH" ADC HL,BC
ADC A,B ADC A,H ADC A,(IX+d) ADC A,IXL" ADC HL,DE
ADC A,C ADC A, ADC A,(IY+d) ADC A,IYH™ ADC HL,HL
ADC A,D ADC A,n ADC A,IYL” ADC HL,SP
Adds source operand s or contents of the memory location addressed by s
and value of carry flag to destination d. Result is then stored to destination
d.
Effects SF | ZF HF P\)| NF | CF
8-bit 7)) i) 0
16-bit)) i i) 0
e 16-bit HF is set by carry from bit 11 (half
carry in high byte)
Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
A, r 1 4 1,1us 0,57us 0,29us 0,14us
A,n 2 7 2,0us 1,00us 0,50us 0,25us
A, (HL) 2 7 2,0us 1,00us 0,50us 0,25us
HL,rr 4 15 4,3us 2,14pus 1,07us 0,54us
A, (IX+d) 5 19 5,4us 2,71us 1,36us 0,68us
A, (IY+d) 5 19 5,4us 2,71pus 1,36us 0,68us
ADD d,s ADD
d<—d+s
8-bit 8-bit 16-bit 16-bit 7ZX Next
ADD AA ADD A, (HL) ADD IX,BC ADD HL,BC ADD BC,A%X

131

ADD A,B ADD A, (IX+d) ADD IX,DE ADD HL,DE ADD DE,A%X
ADD A,C ADD A, (IY+d) ADD IX,IX ADD HL,HL ADD HL,AZX

ADD A,D ADD A,IXH™ ADD IX,SP ADD HL,SP ADD BE,nn%*
ADD A,E ADD A,IXL™ ADD IY,BC ADD DE,nn”X
ADD A,H ADD A,IYH ADD IY,DE ADD HL,nn”X
ADD A,L ADD A,IYL™ ADD IY,IY
ADD A,n ADD IY,SP

Similar to ADC except carry flag is not used in calculation: adds operand s or
contents of the memory location addressed by s to destination d. Result is
then stored to destination d.

In case of ZX Next Extended instructions for adding A to 16-bit register pair,
A is zero extended to 16-bits.

CHAPTER 5. INSTRUCTIONS UP CLOSE

AND s

Effects

8-bit
16-bit

Timing

bitwise AND

A, r

A,n

A, (HL)
rr,AZX
HL,rr
IX,rr
IY,rr

rr,nn?*

A, (IX+d)
A, (IY+d)

A—AAs

AN
AN
AN
AN

D A
D B
D C
DD

SF | ZF HF PV)| NF | CF
0 0 0 0
- - i -

e 16-bit HF is set by carry from bit 11 (half
carry in high byte)

Mec

UL O = s W NN N -

Ts
4
7
7
8

11

15

15

16

19

19

3.0MHz 7MHz
1,1us 0,57us
2,0us 1,00us
2,0us 1,00us
2,3us 1,14us
3,1us 1,57us
4,3us 2,14us
4,3us 2,14us
4,6us 2,29us
5,4us 2,71us
5,4us 2,71us

AND (HL)
AND (IX+d)
AND (IY+d)

14MHz 28MHz
0,29us 0,14us
0,50us 0,25us
0,50us 0,25us
0,57us 0,29us
0,79us 0,39us
1,07us 0,54us
1,07us 0,54us
1,14us 0,57us
1,36us 0,68us
1,36us 0,68us
AND IXH™

AND IXL™

AND IYH™

AND IVYL™

Performs bitwise AND between accumulator A and the given operand. The

result is then stored back to the accumulator.

like this:

A

s | Result

0
0
1
1

0
1
0
1

Effects

Timing

r

n

(HL)
(IX+d)
(IY+d)

0

0
0
1

Individual bits are AND’ed

SF | ZF HF ®V | NF | CF
i) 7 1 i) 0 0

Mc Ts 3.5MHz T7MHz 14MHz 28MHz
1 4 1,1us 0,57us 0,29us 0,14us
2 7 2,0us 1,00us 0,50us 0,25us
2 7 2,0us 1,00us 0,50us 0,25us
5 19 5,4us 2,71pus 1,36us 0,68us
5 19 5,4us 2,71us 1,36us 0,68us

132

CHAPTER 5. INSTRUCTIONS UP CLOSE

BIT b,s test BIT
ZF« 55
BIT b,A BIT b,E BIT b, (HL)
BIT b,B BIT b,H BIT b, (IX+d)
BIT b,C BIT b,L BIT b, (IY+d)
BIT b,D

Tests specified bit b (0-7) of the given register s or contents of memory
addressed by s and sets zero flag according to result; if bit was 1, ZF is 0 and

vice versa.
Effects SF | ZF HF PV | NF | CF
? | 1 1 7 | 0o | -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
b,r 2 8 2,3us 1,14us 0,57us 0,29us
b, (HL) 3 12 3,4us 1,71us 0,86us 0,43us
b, (IX+d) 5 20 5,7us 2,86us 1,43us 0,71us
b, (IY+d) 5 20 5,7us 2,86us 1,43us 0,71us

BRLC DE,BZX Barrel Rotate Left Circular

DE«DE<<(BAS$OF or
DE<«DE>>(16-BA$OF)

Rotates value in register pair DE left for the amount given in bits 3-0 (low
nibble) of register B. To rotate right, use formula: B=16-places. The result
is stored in DE.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
2 8 2,3us 1,14us 0,57us 0,29us

BSLA DE,BZX Barrel Shift Left Arithmetic
DE«DE<<(BA$1F)

Performs shift left of the value in register pair DE for the amount given in
lower 5 bits of register B. The result is stored in DE.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
2 8 2,3us 1,14pus 0,57us 0,29us

133

CHAPTER 5. INSTRUCTIONS UP CLOSE

BSRA DE,B%X Barrel Shift Right Arithmetic
DE«signed (DE)>>>>(BA$1F)

Performs arithmetical shift right of the value in register pair DE for the amount
given in lower 5 bits of register B. The result is stored in DE.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
2 8 2,3us 1,14us 0,57us 0,29us

BSRF DE,B%X Barrel Shift Right Fill-one
DE«—~ (unsigned (~DE)>>(BA$1F))

Performs fill-one-way shift right of the value in register pair DE for the amount
given in lower 5 bits of register B. The result is stored in DE.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
2 8 2,3us 1,14pus 0,57us 0,29us

BSRL DE, BZX Barrel Shift Right Logical
DE<unsigned(DE)>>(BA$1F)

Performs logical shift right of the value in register pair DE for the amount
given in lower 5 bits of register B. The result is stored in DE.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
2 8 2,3us 1,14us 0,57us 0,29us

134

CHAPTER 5. INSTRUCTIONS UP CLOSE

CALL nn

CALL c,nn

CCF

135

CALL subroutine

(SP-1) «PCy
(SP-2) «PC,
SP«SP-2
PC«—nn

Pushes program counter PC to stack and calls subroutine at the given location
nn by changing PC to point to address nn.

Effects SE | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
5 17 4,9us 2,43us 1,21pus 0,61us

CALL subroutine conditionally

if c=true: CALL nn

CALL C,nn calls if CF is set CALL M,nn calls if SF is set

CALL NC,nn calls if CF is reset CALL P,nn calls if SF is reset

CALL Z,nn calls if ZF is set CALL PE,nn calls if PV is set

CALL NZ,nn calls if ZF is reset CALL PO,nn calls if PV is reset

If the given condition is met, CALL nn is performed, as described above.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
c=false 3 10 2,9us 1,43us 0,71us 0,36us
c=true 5 17 4,9us 2,43us 1,21pus 0,61us

Complement Carry Flag
CF« CF

Complements (inverts) carry flag CF; if CF was 0 it’s now 1 and vice versa.
Previous value of CF is copied to HF.

Effects SE | ZF HF PV | NF | CF
- - - - 0 1

e Documentation says original value of CF,
is copied to HF, however my tests show
that HF remains unchanged

3.5MHz
1,1us

TMHz
0,57us

14MHz
0,29us

28MHz
0,14us

Timing Mc Ts
1 4

CHAPTER 5. INSTRUCTIONS UP CLOSE

CP s

CPL

ComPare

A-s

CP A CP E CP (HL) cp IxH"”
CP B CP H CP (IX+d) cp IxL™
CP C CP L CP (IY+d) cp IYH"™
CP D CP n cp IYL™

Operand s or content of the memory location addressed by s is subtracted
from accumulator A. Status flags are updated according to the result, but the
result is then discarded (value of A is not changed). Some general rules:

Signed Unsigned

e A=s: ZF set e A=s: ZF set

e A#s: ZF reset o A#s: ZF reset

e A<s: CF set e A<s: SF and PV different

e A>s: CF reset e A>s: SF and PV the same

Effects SF | ZF HF PV)| NF | CF

)))) 1 0

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
r 1 4 1,1us 0,57us 0,29us 0,14us
n 2 7 2,0us 1,00us 0,50us 0,25us
(HL) 2 7 2,0us 1,00us 0,50us 0,25us
(IX+d) 5 19 5,4us 2,71us 1,36us 0,68us
(IY+d) 5 19 5,4us 2,71us 1,36us 0,68us

ComPLement accumulator
A—A
Complements (inverts) all bits of the accumulator A and stores the result back

to A.

Effects SF | ZF HF PV | NF | CF
- - 1 - 1 -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
1 4 1,1us 0,57us 0,29us 0,14us

Note: CPL is alphabetically after CPD, CPDR, CPI and CPIR, but is placed here to
avoid empty space and to allow CPxx instructions to be presented together

136

CHAPTER 5.

INSTRUCTIONS UP CLOSE

CPD

CPDR

137

ComPare and Decrement

A-(HL)

HL<«HL-1

BC«+BC-1

Subtracts contents of memory location addressed by HL register pair from

accumulator A. Result is then discarded. Afterwards both HL and BC are
decremented.

Effects SF | ZF HF PV | NF | CF
) I) . 1 -

e ZF set if A=(HL) before HL is decremented,
reset otherwise

e PV set if BC#0 after execution, reset
otherwise

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
4 16 4,6us 2,29us 1,14us 0,57us

ComPare and Decrement Repeated

do CPD
while Az (HL) ABC>0

Repeats CPD until either A=(HL) or BC=0. See CPIR for example.

Effects SF | ZF HF PV | NF | CF
) I) . 1 -

e ZF set if A=(HL) before HL is decremented,
reset otherwise
e PV set if BC#0 after execution, reset

otherwise
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
BC=0 or A=(HL) 4 16 4,6pus 2,29us 1,14us 0,57us
BC#0 and As (HL) 5 21 6,0us 3,00us 1,50us 0,75us

CHAPTER 5. INSTRUCTIONS UP CLOSE

CPI

CPIR

CPL

ComPare and Increment

A-(HL)

HL<—HL+1

BC«+—BC-1

Subtracts contents of memory location addressed by HL register pair from
accumulator A. Result is then discarded. Afterwards HL is incremented and
BC decremented.

Effects SF | ZF HF PV | NF | CF
) I’) . 1 -

e ZF set if A=(HL) before HL is incremented,
reset otherwise

e PV set if BC#0 after execution, rest
otherwise

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
4 16 4,6us 2,29us 1,14us 0,57us

ComPare and Decrement Repeated

do CPI
while A (HL) ABC>0

Repeats CPI until either A=(HL) or BC=0.
Example, searching for $AB in memory from $0000-$999:

CPIR = finding first occurrence: CPDR = finding last occurrence:
LD HL, $0000 1+ LD HL, $0999
LD BC, $0999 > LD BC, $0999
LD A, $AB s LD A, $AB
CPIR s« CPDR
Effects SF | ZF HF PV | NF | CF
) °) ° 1 -

e 7ZF set if A=(HL) before HL is incremented,
reset otherwise
e PV set if BC#0 after execution, rest

otherwise
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
BC=0 or A=(HL) 4 16 4,6pus 2,29us 1,14us 0,57us
BC£0 and A+ (HL) 5 21 6,0us 3,00us 1,50us 0,75pus

See page 77

138

CHAPTER 5. INSTRUCTIONS UP CLOSE

DAA Decimal Adjust Accumulator

Updates accumulator A for BCD correction after arithmetic operations using
the following algorithm:

1. If least significant 4 bits of A (low nibble) contain invalid BCD number
(greater than 9), or HF is set, $06 is added to A

2. Then 4 most significant bits (high nibble) of A are checked; if they contain
invalid BCD number, or CF is set, $60 is added to A

Effects SF | ZF HF ®V | NF | CF
7 0 0 7 - 7
e CF set if second addition was required
Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
1 4 1,1us 0,57us 0,29us 0,14us
DEC s DECrement
s<«s-1
8-bit 8-bit 16-bit
DEC A DEC (HL) DEC BC
DEC B DEC (IX+d) DEC DE
DEC C DEC (IY+d) DEC HL
DEC D DEC IXH DEC IX
DEC E DEC IXL™ DEC IY
DEC H DEC IVYH™ DEC SP
DEC L DEC IYL"™

Decrements the operand s or memory addressed by s by 1.

Effects SF | ZF HF PV)| NF | CF
8-bit 0 7 7 ! 1 -
16-bit (no effect) - | - = - - -

e 8-bit: PV set if value was $80 before

decrementing
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
r 1 4 1,1us 0,57us 0,29us 0,14us
rr 1 6 1,7us 0,86us 0,43us 0,21us
IX 2 10 2,9us 1,43us 0,71us 0,36us
IY 2 10 2,9us 1,43us 0,71us 0,36us
(HL) 3 11 3,1us 1,57us 0,79us 0,39us
(IX+d) 6 23 6,6us 3,29us 1,64us 0,82us
(IY+d) 6 23 6,6us 3,29us 1,64us 0,82us

139

CHAPTER 5. INSTRUCTIONS UP CLOSE

DI

DINZ e

EI

Disable Interrupts

IFF1<0
IFF2<0

Disables all maskable interrupts (mode 1 and 2). Interrupts are disabled
after execution of the instruction following DI. See sections 77 and 7?7 for
more details on interrupts.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
1 4 1,1us 0,57us 0,29us 0,14us

Decrement B and Jump if Not Zero

B«<B-1
if B#0: JR e

Decrements B register and jumps to given relative address if B#0. Given
offset is added to the value of PC after parsing DINZ instruction, so effective
offset it =126 to +129. Assembler automatically subtracts 2 from offset value
e to generate opcode.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
B=0 2 8 2,3us 1,14pus 0,57us 0,29us
B+#0 3 13 3,7us 1,86us 0,93us 0,46us

Enable Interrupts

IFFl1<1
IFF2«1

Enables maskable interrupts (mode 1 and 2). Interrupts are enabled after
execution of the instruction following EI; typically RETI or RETN. See sections
7?7 and ?? for more details on interrupts.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
1 4 1,1us 0,57us 0,29us 0,14us

140

CHAPTER 5. INSTRUCTIONS UP CLOSE

EX d,s EXchange register pair
d<>s
EX AF,AFR° EX (SP),HL
EX DE,HL EX (SP),IX
EX (SP),IY

Exchanges contents of two register pairs or register pair and last value pushed
to stack. For example:

BEFORE AFTER

Reg Value

HL $ABCD $3412

SP $0B0O $0B0O

Mem Value — EX (SP),HL —

$0BOO $12 $CD

$0BO1 $34 $AB

Effects SF | ZF HF PV | NF | CF

No effect - - - - - -
EX AF,AF’ ° ° ° ° ° ®

e EX AF,AF’ sets flags directly from the

value of F’
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
rr,rr 1 4 1,1us 0,57us 0,29us 0,14us
(SP) ,HL 5 19 5,4us 2,71pus 1,36us 0,68us
(spP),IX 6 23 6,6us 3,29us 1,64us 0,82us
(SP),IY 6 23 6,6us 3,29us 1,64us 0,82us
EXX EXchange alternate registers
BC«<BC’
DE«<~DE’
HL<HL’

Exchanges contents of registers BC, DE and HL with shadow registers BC’, DE’
and HL’. The most frequent use is in interrupt handlers as an alternative
to using the stack for saving and restoring register values. If using outside
interrupt handlers, interrupts must be disabled before using this instruction.

Effects SE | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
1 4 1,1us 0,57us 0,29us 0,14us

141

CHAPTER 5. INSTRUCTIONS UP CLOSE

HALT

IM n

HALT

Suspends CPU and executes NOPs (to continue memory refresh cycles) until
the next interrupt or reset. This effectively creates a delay. You can chain
HALTs. But make sure that there will be an interrupt, otherwise HALT will
run forever.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
1 4 1,1us 0,57us 0,29us 0,14us

Interrupt Mode

IM O
IM 1
IM 2

Sets the interrupt mode. All 3 interrupts are maskable, meaning they can be
disabled using DI instruction. See sections 7?7 and 77 for details and example.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
2 8 2,3us 1,14pus 0,57us 0,29us

142

CHAPTER 5.

INSTRUCTIONS UP CLOSE

IN r, (s)

143

INput from port

r—(s)

IN A, (n) IN D, (C) IN ()"
IN A, (C) IN E, (C) IN F, ()"
IN B, (C) IN H, (C)

IN C, (C) IN L, (C)

Reads peripheral device addressed by BC or combination of A and immediate
value and stores result in given register. The address is provided as follows:

Address Bits
Variant 15-8 7-0
IN A, (n) A n
IN r, (C) B C

So these two have the same result (though, as mentioned in section ??, variant
on the right is slightly faster, 18 vs 22 T states):

LD BC, $DFFE . LD A, $DF

IN A, (C) . IN A, ($FE)

Effects SF | ZF HF @V NF | CF
IN r, (C) 7 7 0 ! 0 -

IN A, (n) (no effect) - - = - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
r, (n) 3 11 3,1us 1,57pus 0,79us 0,39us
r, (C) 3 12 3,4us 1,71pus 0,86us 0,43us

Note: IN (C) (or its alternative form IN F,(C)) variant performs an input, but
does not store the result, only sets the flags.

Note: some assemblers also allow (BC) to be used instead of (C).

CHAPTER 5. INSTRUCTIONS UP CLOSE

INC s INCrement
s«s+1
8-bit 8-bit 16-bit
INC A INC (HL) INC BC
INC B INC (IX+d) INC DE
INC C INC (IY+d) INC HL
INC D INC IXH™ INC IX
INC E INC IXL™ INC IY
INC H INC IYH™ INC SP
INC L INC IYL™

Increments the operand s or memory addressed by s by 1.

Effects SF | ZF HF PV)| NF | CF
8-bit 0 0 0 0 0 =
16-bit (no effect) - - - - - -

e 8-bit: PV set if value was $7F before

incrementing
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
r 1 6 1,7us 0,86us 0,43us 0,21us
rr 1 6 1,7us 0,86us 0,43us 0,21us
IX 2 10 2,9us 1,43us 0,71us 0,36us
IY 2 10 2,9us 1,43us 0,71us 0,36us
(HL) 3 11 3,1us 1,57us 0,79us 0,39us
(IX+d) 6 23 6,6us 3,29us 1,64us 0,82us
(IY+d) 6 23 6,6us 3,29us 1,64us 0,82us

144

CHAPTER 5.

INSTRUCTIONS UP CLOSE

IND

INDR

145

INput and Decrement

(HL) <« (BC)

HL<—HL-1

B«B-1

Reads peripheral device addressed by BC and stores the result in memory
addressed by HL register pair. Then decrements HL and B.

Effects SE | ZF HF PV | NF | CF

[] L] [] [] 1 -

e SF, HF and PV are destroyed on Next, for
other Z80 computers see 77

e ZF set if B becomes zero after
decrementing, otherwise reset

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
4 16 4,6us 2,29us 1,14us 0,57us

INput and Decrement Repeated

do IND
while B>0

Repeats IND until B=0.

Effects SF | ZF HF PV | NF | CF
° 1 o o 1 -

e SF, HF and PV are destroyed on Next, for
other Z80 computers see 77

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
B=0 4 16 4,6us 2,29us 1,14us 0,57us
B#0 5 21 6,0us 3,00us 1,50us 0,75us

CHAPTER 5. INSTRUCTIONS UP CLOSE

INI

INIR

INput and Increment

(HL) «—(BC)
HL<«—HL+1
B«—B-1

Reads peripheral device addressed by BC and stores the result in memory
addressed by HL register pair. Then increments HL and decrements B.

Effects SF | ZF HF PV | NF | CF

[] L] [[] 1 -

e SF, HF and PV are destroyed on Next, for
other Z80 computers see 77

e ZF set if B becomes zero after
decrementing, otherwise reset

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
4 16 4,6us 2,29us 1,14us 0,57us

INput and Increment Repeated

do INI
while B>0

Repeats INI until B=0.

Effects SF | ZF HF PV | NF | CF
° 1 ° ° 1 -

e SF, HF and PV are destroyed on Next, for
other Z80 computers see 77

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
B=0 4 16 4,6us 2,29us 1,14us 0,57us
B#0 5 21 6,0us 3,00us 1,50us 0,75us

146

CHAPTER 5.

INSTRUCTIONS UP CLOSE

JP nn

JP c,nn

Jp (CO)ZX

147

JumP
PC«—nn
JP nn JP (IX)
JP (HL) JP (IY)

Unconditionally jumps (changes program counter PC to point) to the given
absolute address or the memory location addressed by register pair. Unconditional
jumps are the fastest way of changing program counter, even faster than JR,

but they take more bytes.

Effects SE | ZF HF PV | NF | CF
No effect on flags = - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
(HL) 1 4 1,1pus 0,57us 0,29us 0,14us
(IX) 2 8 2,3us 1,14us 0,57us 0,29us
(1Y) 2 8 2,3us 1,14us 0,57us 0,29us
nn 3 10 2,9us 1,43us 0,71us 0,36us

JumP conditionally

if c=true: JP nn

JP C,nn jumps if CF is set JP M,nn jumps if SF is set
JP NC,nn jumps if CF is reset JP P,nn jumps if SF is reset
JP Z,nn jumps if ZF is set JP PE,nn jumps if PV is set

JP NZ,nn jumps if ZF is reset JP PO,nn jumps if PV is reset

Conditionally jumps to the given absolute address. See CP on page ?? for
more details on comparisons.

Effects SE | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
3 10 2,9us 1,43us 0,71us 0,36us

JumP
PC+PCA$CO00+IN(C)<<6

Sets bottom 14 bits of current program counter PC™ to value read from 1/0O
port: PC[13-0] = (IN (C) << 6). Can be used to execute code block read
from a disk stream.

““Current PC” is address of the next instruction after JP (C); PC was already
advanced after fetching JP (C) instruction from memory. If JP (C) instruction is

CHAPTER 5. INSTRUCTIONS UP CLOSE

JR e

JR ¢c,n

located at the very end of 16K memory block ($..FE or $..FF address), then new
PC value will land into following 16K block.

Effects SF | ZF HF PV | NF | CF
? ? v ? ? ?
Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz

3 13 3,7us 1,86us 0,93us 0,46us

Jump Relative
PC«PC+e

Unconditionally performs relative jump. Offset e is added to the value of
program counter PC as signed value to allow jumps forward and backward.
Offset is added to PC after JR instruction is read (aka PC+2), so offset is in
the range of -126 to 129. Assembler automatically subtracts 2 from offset
value e to generate opcode.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
3 12 3,4us 1,71us 0,86us 0,43us

Jump Relative conditionally
if c=true: JR n

JR C,e jumps if CF is set
JR NC,e jumps if CF is reset
JR Z,e jumps if ZF is set
JR NZ,e jumps if ZF is reset

Conditionally performs relative jump. Note: in contrast to JP, JR only
supports above 4 conditions. See CP on page ?? for more details on conditions.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
c=false 2 7 2,0us 1,00us 0,50us 0,25us
c=true 3 12 3,4us 1,71us 0,86us 0,43us

148

CHAPTER 5. INSTRUCTIONS UP CLOSE

LD d,s LoaD
d«s

Loads source s into destination d. The following combinations are allowed
(source s is represented horizontally, destination d vertically):

ABICDEH L IR|IXH|IXL IYH/IYLBCDEHL|SP/IX|IY|(BC) | (DE)|(HL)|(IX+d)|(IY+d) nnn (nn)
A oeceeceee o o | o o . . ° ° ° . .
B oo eoeele o | o | e | o ° ° . .
C oo eeeele o | o | e | o
D oo eoeele o | o | e | o . . ° .
E oo eoeee o | o | e | o ° . . .
H |ejeeeleee . . o |o
L |eleelejeee . . o |o
I .
R |e
IXH |eje/ele o o o
IXL |eje/ele o | o o
IYH |e|ejee o | o °
IYL |e|e|e|e o | e .
BC o o
DE o o
HL o o
SP . o e o o
IX o o
Iy o o
(BC) |e
(DE) |e
(HL) |o|o|/o|o|e|e e
(IX+d) e e|e|e ele|e
(IY+d) e e|e|e ele|e
(nn) |e oo o0 oo

149

CHAPTER 5. INSTRUCTIONS UP CLOSE
Effects SF | ZF HF PV | NF | CF
LD A,I and LD A,R i)) IFF2 -
Other variants - - - -
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
r,r 1 4 1,1us 0,57us 0,29us 0,14us
SP,HL 1 6 1,7us 0,86us 0,43us 0,21us
r,n 2 7 2,0us 1,00us 0,50us 0,25us
rr,A 2 7 2,0us 1,00us 0,50us 0,25us
A, (rr) 2 7 2,0us 1,00us 0,50us 0,25us
r, (HL) 2 7 2,0us 1,00us 0,50us 0,25us
(HD) ,r 2 7 2,0us 1,00us 0,50us 0,25us
A,I 2 9 2,6us 1,29us 0,64us 0,32us
AR 2 9 2,6us 1,29us 0,64us 0,32us
I,A 2 9 2,6us 1,29us 0,64us 0,32us
R,A 2 9 2,6us 1,29us 0,64us 0,32us
SP,IX 2 10 2,9us 1,43us 0,71us 0,36us
SP,IY 2 10 2,9us 1,43us 0,71ips 0,36us
(HL) ,n 3 10 2,9us 1,43us 0,7ius 0,36us
rr,nn 3 10 2,9us 1,43us 0,71us 0,36us
A, (nn) 4 13 3,7us 1,86us 0,93us 0,46us
(nn) ,A 4 13 3,7us 1,86us 0,93us 0,46us
IX,nn 4 14 4,0us 2,00us 1,00us 0,50us
IY,nn 4 14 4,0us 2,00us 1,00us 0,50us
(HL) ,nn 5 16 4,6pus 2,29us 1,14us 0,57us
(nn) ,HL 5 16 4,6ps 2,29us 1,14us 0,57us
r, (IX+d) 5 19 5,4us 2,71pus 1,36us 0,68us
r, (IY+d) 5 19 5,4us 2,71pus 1,36us 0,68us
(IX+d) ,r 5 19 5,4us 2,71pus 1,36us 0,68us
(IX+d),n 5 19 5,4us 2,71pus 1,36us 0,68us
(IY+d),r 5 19 5,4us 2,71pus 1,36us 0,68us
(IY+d) ,n 5 19 5,4us 2,71pus 1,36us 0,68us
(IX) ,nn 6 20 5,7us 2,86us 1,43us 0,71us
(IY) ,nn 6 20 5,7us 2,86us 1,43us 0,71us
rr, (nn) 6 20 5,7us 2,86us 1,43us 0,71us
(nn) ,rr 6 20 5,7us 2,86us 1,43us 0,71us

150

CHAPTER 5. INSTRUCTIONS UP CLOSE

LDD LoaD and Decrement

(DE) «— (HL)
DE«DE-1
HL«HL-1
BC«BC-1

Loads contents of memory location addressed by HL to memory location
addressed by DE. Then decrements DE, HL and BC register pairs.

Effects SF | ZF HF PV | NF | CF
- - 0 . 0 -
e PV set if BC#0 after execution, reset
otherwise
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz

4 16 4,6us 2,29us 1,14us 0,57us

LDDR LoaD and Decrement Repeated

do LDD
while BC>0

Repeats LDD until BC=0. LDDR can be used for block transfer. See LDIR for
an example and comparison of both instructions.

Effects SF | ZF HF PV | NF | CF
- - 0 0 0 -
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
BC=0 4 16 4,6us 2,29us 1,14us 0,57us
BC+#0 5 21 6,0us 3,00us 1,50us 0,75us

LDDX, LDDRX See page 77

LDI LoaD and Increment

(DE) «—(HL)
DE«DE+1
HL«HL+1
BC«BC-1

Same as LDD, except it increments DE and HL.

Effects SE | ZF HF PV | NF | CF
- - 0 ° 0 -

e PV reset if BC=0 after execution, set
otherwise

151

LDIR

LDIX, LDIRX

LDWSZX

CHAPTER 5. INSTRUCTIONS UP CLOSE
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
4 16 4,6pus 2,29us 1,14us 0,57us

LoaD and Increment Repeated

do LDI
while BC>0

Repeats LDI until BC=0. Example of copying 100 bytes from source to
destination with LDIR and LDDR:

LDIR = copy forward LDDR = copy backwards

LD HL, source 1+ LD HL, source+99
LD DE, destination 2 LD DE, destination+99
LD BC, 100 s LD BC, 100
LDIR s LDDR
Effects SF | ZF HF PV | NF | CF
- - 0 0 0 -
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
BC=0 4 16 4,6pus 2,29us 1,14us 0,57us
BC+#0 5 21 6,0us 3,00us 1,50us 0,75us

See pages 77 and 77

LoaD Wasp Special

(DE) «—(HL)
INC L
INC D

Copies the byte pointed to by HL to the address pointed to by DE. Then
increments L and D. Used for vertically copying bytes to Layer 2 display.

Effects SF | ZF HF PV)| NF | CF
0 0 ! ! 0 | -
e PV set if D was $7F before increment,
otherwise reset
Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
4 14 4,0us 2,00us 1,00us 0,50us

Note: the source data are read only from single 256B (aligned) block of memory,
because only L is incremented, not HL pair.

Note: LDWS is alphabetically after LDPIRX, but is placed here to avoid empty space
and to allow Next extended LDxx instructions to be presented together

152

CHAPTER 5. INSTRUCTIONS UP CLOSE

LDDX%X LoaD and Decrement eXtended
if (HL)#A: (DE)<(HL)
DE<DE+1
HL<HL-1
BC+—BC+1

Works similar to LDD except:

e Byte is only copied if it’s different from the accumulator A
e DE is incremented instead of decremented
e Doesn’t change flags

Effects SE | ZF HF PV | NF | CF

No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
4 16 4,6us 2,29us 1,14us 0,57us

LDDRXZX LoaD and Decrement Repeated eXtended

do LDDX
while BC>0

Works similar to LDDR except the differences noted at LDDX above.

Effects SF | ZF HF PV | NF | CF

No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
BC=0 4 16 4,6us 2,29us 1,14us 0,57us
BC+#0 5 21 6,0us 3,00us 1,50us 0,75us
LDIXZX LoaD and Increment eXtended

if (HL)#A: (DE)«(HL)

DE<-DE+1

HL<HL+1

BC+—BC-1

Works similar to LDI except:

e Byte is only copied if it’s different from the accumulator A
e Doesn’t change flags

Effects SE | ZF HF PV | NF | CF

No effect on flags - - - - - -

153

CHAPTER 5. INSTRUCTIONS UP CLOSE

LDIRXZX

LDPIRX%X

LDWS

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
4 16 4,6pus 2,29us 1,14us 0,57us

LoaD and Increment Repeated eXtended

do LDIX
while BC>0

Works similar to LDIR except the differences noted at LDIX on previous page.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
BC=0 4 16 4,6us 2,29us 1,14us 0,57us
BC#0 o 21 6,0us 3,00us 1,50us 0,75us

LoaD Pattern fill and Increment eXtended

do
t<« (HLA$FFFS8+EAT)
if t#A: (DE)«t
DE<DE+1
BC«—BC-1

while BC>0

Similar to LDIRX except the source byte address is not just HL, but is obtained
by using the top 13 bits of HL and lower 3 bits of DE. Furthermore HL is not
incremented during the loop; it serves as the base address of the aligned 8-
byte lookup table. DE works as destination and also wrapping index 0..7 into
the table. This instruction is intended for “pattern fill” functionality.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
BC=0 4 16 4,6pus 2,29us 1,14us 0,57us
BC+#0 5 21 6,0us 3,00us 1,50us 0,75us

See page 77

154

CHAPTER 5. INSTRUCTIONS UP CLOSE

MIRROR AZX

MUL D,EZX

NEG

NEXTREG n,s?¥

155

MIRROR bits

Al

A [7654]3210]

Amtu

Mirrors (reverses the order) of bits in the accumulator A.

Effects SE | ZF HF PV | NF | CF
No effect on flags = - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
2 8 2,3us 1,14us 0,57us 0,29us

Note: Older core versions also supported MIRROR DE, but this was removed.

MULtiply
DE<DXE
Multiplies D by E, storing 16-bit result into DE.

Effects SE | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
2 8 2,3us 1,14us 0,57us 0,29us

NEGate

A—-A

Negates contents of the accumulator A and stores result back to A.

Effects SF | ZF HF ®V | NF | CF
U ! ! 113

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
2 8 2,3us 1,14us 0,57us 0,29us

set NEXT REGister value

HwNextReg[n] «—s
NEXTREG n,A NEXTREG n,n’
Directly sets the Next Feature Control Registers without going through ports

TBBlue Register Select $243B and TBBlue Register Access $253B. See
section 7?7 for ports list.

CHAPTER 5. INSTRUCTIONS UP CLOSE

NOP

OR s

Effects

No effect on flags

Timing
r,A
r,n

No OPeration

Does nothing for 4 cycles.

Effects

No effect on flags

Timing

bitwise OR
A—Avs

OR A
OR B
OR C
OR D

SF | ZF HF PV | NF | CF

Mc Ts 3.5MHz 7MHz 14MHz 28MHz

4 17 4,9us 2,43us 1,21us 0,61us

5 20 5,7us 2,86us 1,43us 0,71us

SF | ZF HF PV | NF | CF

Mcec Ts 3.5MHz T7MHz 14MHz 28MHz

1 4 1,1us 0,57us 0,29us 0,14us
OR E OR (HL) OR IXH™
OR H OR (IX+d) OR IXL™
OR L OR (IY+d) OR IYH™
OR n OR IYL™

Performs bitwise or between the accumulator A and operand s or contents of
memory addressed by s. Then stores the result back to A. Individual bits are

OR’ed like this:

s | Result
0

= = O Ol

0

1 1
0 1
1 1

Effects

Timing
r
n
(HL)
(IX+d)
(IY+d)

SF | ZF HF ®V | NF | CF
U 0 ? 0| o0

Mc Ts 3.5MHz T7MHz 14MHz 28MHz
1 4 1,1us 0,57us 0,29us 0,14us
2 7 2,0us 1,00us 0,50us 0,25us
2 7 2,0us 1,00us 0,50us 0,25us
5 19 5,4us 2,71pus 1,36us 0,68us
5 19 5,4us 2,71us 1,36us 0,68us

156

CHAPTER 5. INSTRUCTIONS UP CLOSE
OTDR OuTput and DecRement
do OUTD
while B>0
Repeats OUTD (see page ?7) until B=0. Similar to OTIR except HL is decremented
instead of incremented.
Effects SF | ZF HF PV | NF | CF
° 1 . ° 1 -
e SF, HF and PV are destroyed on Next, for
other Z80 computers see 77
Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
B=0 4 16 4,6us 2,29us 1,14us 0,57us
B+#0 5 21 6,0us 3,00us 1,50us 0,75us
OTIR OuTput and IncRement

157

do OUTI
while B>0

Repeats OUTI (see page ?7) until B=0. Similar to OTDR except HL is incremented
instead of decremented.

Effects SF | ZF HF PV | NF | CF
. 1 °) 1 -

e SF, HF and PV are destroyed on Next, for
other Z80 computers see 77

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
B=0 4 16 4,6us 2,29us 1,14us 0,57us
B+#0 5 21 6,0us 3,00us 1,50us 0,75us

CHAPTER 5. INSTRUCTIONS UP CLOSE

QUT (d),s

OUTD

OUTput to port
(d)«s

OUT (n),A ouT (C),A
ouT (C),B
ouT (C),C
ouT (C),D
ouT (C),E
OUT (C),H
OUT (C),L

oUT (C),0™

Writes the value of operand s to the port at address d. Port addresses are
always 16-bit values defined like this:

Address Bits
Variant 15-8 7-0

0UT (n),A A n
ouT (C),r B C
Effects SF | ZF HF PV | NF | CF

No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7"MHz 14MHz 28MHz
(n),A 3 11 3,1us 1,57us 0,79us 0,39us
©,r 3 12 3,4us 1,71us 0,86us 0,43us

Note: on the Next FPGA 0OUT (C),0 variant outputs O to the port at address BC,
but some Z80 chips may output different value like $FF, so it is not recommended
to use OUT (C),0 if you want to reuse your code on original ZX Spectrum also.

OUTput and Decrement

(BC) « (HL)
HL<«HL-1
B«—B-1

Outputs the value from contents of memory addressed by HL to port on
address BC. Then decrements both, HL and B.

Effects SF | ZF HF PV | NF | CF
1 -

e SF, HF and PV are destroyed on Next, for
other Z80 computers see 77
e ZF set if B=0 after decrement, reset

otherwise
Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
4 16 4,6us 2,29us 1,14us 0,57us

158

CHAPTER 5. INSTRUCTIONS UP CLOSE

OUTI

QUTINBZX

PIXELADZX

159

OUTput and Increment

B«—B-1
(BC) <« (HL)
HL<HL+1

Similar to OUTD (see page ?7?) except HL is incremented.

Effects SE | ZF HF PV | NF | CF

° ° ° ° 1 -

e SF, HF and PV are destroyed on Next, for
other Z80 computers see 77

e ZF set if B=0 after decrement, reset
otherwise

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
4 16 4,6us 2,29us 1,14us 0,57us

OUTput and Increment with No B

(BC) «—(HL)
HL<HL+1

Similar to OUTI except it doesn’t decrement B.

Effects SEF | ZF HF PV | NF | CF
? ? ? ? ? ?
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz

4 16 4,6us 2,29us 1,14us 0,57us

PIXEL ADdress
HL«—$4000+((DA$CO)<<5)+((DA$07)<<8)+((DA$38)<<2)+(E>>3)

Takes E and D as the (x,y) coordinates of a point and calculates the address
of the byte containing this pixel in the pixel area of standard ULA screen 0.
Result is stored in HL.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
2 8 2,3us 1,14us 0,57us 0,29us

CHAPTER 5. INSTRUCTIONS UP CLOSE

PIXELDNZX

POP rr

PIXEL DowIN

if (HLA$700)#$700
HL<«—HL+256

else if (HLAS$EO)+#$EO
HL<HLA$FS8FF+$20

else
HL<—HLA$F81F+$800

Updates the address in HL (likely from prior PIXELAD or PIXELDN) to move
down by one line of pixels of standard ULA screen 0.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
2 8 2,3us 1,14us 0,57us 0,29us

POP from stack

rr,< (SP+1)
rr;< (SP)
SP«—SP+2

POP AF POP IX
POP BC POP IY
POP DE
POP HL

Copies 2 bytes from stack pointer SP into contents of the given register pair
ss and increments SP by 2.

Effects SF | ZF HF PV | NF | CF
No effect - - - - - -
POP AF 0 7 7 7 0 7

e POP AF flags set directly to low 8-bits of
the value from SP

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
rr 3 10 2,9us 1,43us 0,71us 0,36us
IX 4 14 4,0us 2,00us 1,00us 0,50us
IY 4 14 4,0us 2,00us 1,00us 0,50us

160

CHAPTER 5. INSTRUCTIONS UP CLOSE

PUSH ss PUSH on stack

(SP-2) «ss;

(SP-1) «ssy

SP«SP-2

PUSH AF PUSH IX PUSH nn%*
PUSH BC PUSH IY

PUSH DE
PUSH HL

Copies contents of a register pair to the top of the stack pointer SP, then
decrements SP by 2. Next extended PUSH nn also allows pushing immediate
16-bit value.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
rr 3 11 3,1us 1,57us 0,79us 0,39us
IX 4 15 4,3us 2,14pus 1,07us 0,54us
IY 4 15 4,3us 2,14us 1,07us 0,54us
nn 6 23 6,6us 3,29us 1,64us 0,82us

RES b,s RESet bit

sp <0

RES b,A RES b, (IX+d),A™ RES b, (IY+d),A™

RES b,B RES b, (IX+d),B" RES b, (IY+d),B™

RES b,C RES b, (IX+d),C" RES b, (IY+d),C"

RES b,D RES b, (IX+d),D"" RES b, (IY+d),D"

RES b,E RES b, (IX+d) ,E RES b, (IY+d) ,E

RES b,H RES b, (IX+d) ,H" RES b, (IY+d) ,H"

RES b,L RES b, (IX+d),L” RES b, (IY+d),L™

RES b, (HL)

RES b, (IX+d)
RES b, (IY+d)

Resets bit b (0-7) of the given register s or memory location addressed by
operand s.

Effects SE | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
r 2 8 2,3us 1,14pus 0,57us 0,29us
(HL) 4 15 4,3us 2,14ps 1,07us 0,54us
(IX+d) 6 23 6,6us 3,29us 1,64us 0,82us
(IY+d) 6 23 6,6us 3,29us 1,64us 0,82us

161

CHAPTER 5. INSTRUCTIONS UP CLOSE

RET

RET c

RETI

RETurn from subroutine

PC, <« (SP+1)
SP<«-SP+2

Returns from subroutine. The contents of program counter PC is POP-ed from
stack so next instruction will be loaded from there.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
3 10 2,9us 1,43us 0,71us 0,36us

RETurn from subroutine conditionally

if c=true: RET

RET C,nn returns if CF is set RET M,nn returns if SF is set
RET NC,nn returns if CF is reset RET P,nn returns if SF is reset
RET Z,nn returns if ZF is set RET PE,nn returns if PV is set

RET NZ,nn returns if ZF is reset RET PO,nn returns if PV is reset

If given condition is met, RET is performed, as described above.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
c=false 1 5 1,4us 0,71us 0,36us 0,18us
c=true 3 11 3,1us 1,57us 0,79us 0,39us

RETurn from Interrupt

PC,«(SP)
PCp < (SP+1)
SP«—SP+2

Returns from maskable interrupt; restores stack pointer SP and signals to I/O
device that interrupt routine is completed.

Note that RETI doesn’t re-enable interrupts that were disabled when interrupt
routine started - EI should be called before RETI to do that.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
4 14 4,0us 2,00us 1,00us 0,50us

162

CHAPTER 5. INSTRUCTIONS UP CLOSE

RETN RETurn from Non-maskable interrupt

PC, <« (SP)
PCp<«— (SP+1)
SP«SP+2
IFF1<IFF2

Returns from non-maskable interrupt; restores stack pointer SP and copies
state of IFF2 back to IFF1 so that maskable interrupts are re-enabled.

Effects SE | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
4 14 4,0us 2,00us 1,00us 0,50us

RL s Rotate Left

7«0
S

RL A RL (IX+d),A™ RL (IY+d),A™
RL B RL (IX+d),B™ RL (IY+d),B™
RL C RL (IX+d),C™ RL (IY+d),C™
RL D RL (IX+d),D™ RL (IY+d),D™
RL E RL (IX+d),E™ RL (IY+d),E™
RL H RL (IX+d),H™ RL (IY+d),H™
RL L RL (IX+d),L” RL (IY+d),L™
RL (HL)
RL (IX+d)
RL (IY+d)

Performs 9-bit left rotation of the value of the operand s or memory addressed
by s through the carry flag CF so that contents of CF are moved to bit 0 and
bit 7 to CF. Result is then stored back to s.

Effects SF | ZF HF ®V | NF | CF
ORI 0 0 o | 3
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
r 2 8 2,3us 1,14pus 0,57us 0,29us
(HL) 4 15 4,3us 2,14us 1,07us 0,54us
(IX+d) 6 23 6,6us 3,29us 1,64us 0,82us
(IY+d) 6 23 6,6us 3,29us 1,64us 0,82us

163

CHAPTER 5. INSTRUCTIONS UP CLOSE

RLA

RLC s

Rotate Left Accumulator

ICF] 7+—O<J
A

Performs RL A, but twice faster and preserves SF and ZF.

Effects SF | ZF HF PV | NF | CF
- - 0 - 1o |1
Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz

1 4 1,1us 0,57us

Rotate Left Circular

70

S
RLC A RLC (IX+d),A™ RLC
RLC B RLC (IX+d),B™ RLC
RLC C RLC (IX+d),C™ RLC
RLC D RLC (IX+d),D™ RLC
RLC E RLC (IX+d),E™ RLC
RLC H RLC (IX+d),H™ RLC
RLC L RLC (IX+d),L™ RLC
RLC (HL)
RLC (IX+d)
RLC (IY+d)

0,29us 0,14us

(Iy+d) ,A™
(Iy+d) ,B™
(IY+d),c™
(IY+d) ,D™
(IY+d) ,E™
(Iy+d) .1
(Iy+d) L™

Performs 8-bit rotation to the left. Bit 7 is moved to carry flag CF as well as

to bit 0. Result is then stored back to s.

Note: undocumented variants work slightly differently:

RLC r, (IX+d): RLC r, (IY+d):

r< (IX+d) r—(IY+d)

RILC r RIC r

(IX+d)«r (IY+d) «r

Effects SF | ZF HF ®V | NF | CF

U 0 ! o | ¢

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
r 2 8 2,3us 1,14us 0,57us 0,29us
(HL) 4 15 4,3us 2,14ps 1,07us 0,54us
(IX+d) 6 23 6,6us 3,29us 1,64us 0,82us
(IY+d) 6 23 6,6us 3,29us 1,64us 0,82us

164

CHAPTER 5. INSTRUCTIONS UP CLOSE
RLCA Rotate Left Circular Accumulator
7«0
A
Performs RLC A, but twice faster and preserves SF and ZF.
Effects SF | ZF HF PV | NF | CF
- | - 0 -l o |1
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
1 4 1,1us 0,57us 0,29us 0,14us
RLD Rotate Left bed Digit

165

-

I
A [7-4]3-0] [T-4][3-0] (HL)
S Y

Performs leftward 12-bit rotation of 4-bit nibbles where 2 least significant
nibbles are stored in memory location addressed by HL and most significant
digit as lower 4 bits of the accumulator A.

If used with BCD numbers: as the shift happens by 1 digit to the left, this
effectively results in multiplication with 10. A acts as a sort of decimal carry
in the operation. Example of multiplying multi-digit BCD number by 10:

1 MultiplyBy10: ; number=0123 Progression

2 LD HL, number+digits-1 e number A B

3 LD B, digits ; number of repeats

4 XOR A ; reset "carry" 214 %@ 0 2

s lp: RLD ; multiply by 10 (HL)

6 DEC HL ; prev 2 digits . 0130 2 1

7 DJNZ 1p ; number=1230, A=0 o =

. (HL)

s number: s= 1230 0 O

10 DB $01, $23 RS

1+ digits = $-number ;(2)

Effects SF | ZF HF @V NF | CF
1] 7 0 0 o | -

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz

5 18 5,1us 2,57Tus 1,29us 0,64us

Note: instruction doesn’t assume any format of the data; it simply rotates nibbles.
So while it’s most frequently associated with BCD numbers, it can be used for
shifting hexadecimal values (in which case it would represent multiplication by 16)
or any other content.

CHAPTER 5. INSTRUCTIONS UP CLOSE

RR s Rotate Right

L 7=ol>[cF]
S

RR A RR (IX+d),A™ RR (IY+d),A™
RR B RR (IX+d),B™ RR (IY+d),B™
RR C RR (IX+d),C™ RR (IY+d),C™
RR D RR (IX+d),D" RR (IY+d),D"
RR E RR (IX+d),E™ RR (IY+d),E™
RR H RR (IX+d),H™ RR (IY+d),H™
RR L RR (IX+d),L™ RR (IY+d),L™
RR (HL)
RR (IX+d)
RR (IY+d)

Performs 9-bit right rotation of the contens of the operand s or memory
addressed by s through carry flag CF so that contents of CF are moved to bit
7 and bit 0 to CF. Result is then stored back to s.

Effects SF | ZF HF ®V | NF | CF
DR 0 ! o |7

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
r 2 8 2,3us 1,14us 0,57us 0,29us
(HL) 4 15 4,3us 2,14us 1,07us 0,54us
(IX+d) 6 23 6,6us 3,29us 1,64us 0,82us
(IY+d) 6 23 6,6us 3,29us 1,64us 0,82pus

RRA Rotate Right Accumulator
L 7—0
A

Performs RR A, but twice faster and preserves SF and ZF.

Effects SF | ZF HF PV | NF | CF
- | - 0 -l o |1

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
1 4 1,1us 0,57us 0,29us 0,14us

166

CHAPTER 5.

INSTRUCTIONS UP CLOSE

RRC s

RRCA

RRD

167

Rotate Right Circular

I.7—>OI

S
RRC A RRC (IX+d),A™ RRC (IY+d),A™
RRC B RRC (IX+d),B™ RRC (IY+d),B™
RRC C RRC (IX+d),C™ RRC (IY+d),C™
RRC D RRC (IX+d),D" RRC (IY+d),D"
RRC E RRC (IX+d),E™ RRC (IY+d),E™
RRC H RRC (IX+d),H™ RRC (IY+d),H™
RRC L RRC (IX+d),L™ RRC (IY+d),L™
RRC (HL)
RRC (IX+d)
RRC (IY+d)

Performs 8-bit rotation of the source s to the right. Bit 0 is moved to CF as
well as to bit 7. Result is then stored back to s.

Effects SF | ZF HF ®V | NF | CF
OB 0 0 0o |1
Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
r 2 8 2,3us 1,14us 0,57us 0,29us
(HL) 4 15 4,3us 2,14us 1,07us 0,54us
(IX+d) 6 23 6,6us 3,29us 1,64us 0,82us
(IY+d) 6 23 6,6us 3,29us 1,64us 0,82us

Rotate Right Circular Accumulator

Il7—>OI
A

Performs RRC A, but twice faster and preserves SF and ZF.

Effects SF | ZF HF PV | NF | CF
- - 0 -1 o |3
Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz

1 4 1,1us 0,57us 0,29us 0,14us

Rotate Right bcd Digit

[v[v
A [7-4]3-0] [7T-4][3-0] (HL)
A]

Similar to RLD (page ??7) except rotation is to the right. If used with BCD
values, this operation effectively divides 3-digit BCD number by 10 and stores

CHAPTER 5. INSTRUCTIONS UP CLOSE

remainder in A. Taking the example from RLD, we can easily convert it to
division by 10 simply by using RRD. Note however we also need to change
the order - we start from MSB now (which is exactly how division would be
performed by hand):

;. DivideBy10: Progression
2 LD HL, number ; number=0123 e number A B
3 LD B, digits ; number of repeats . 0123 0 2
4 XO0R A ; reset '"carry" L R
s 1p: RRD ; divide by 10 (HL)
6 INC HL ; next 2 digits e 0023 1 1
7 DJNZ 1p ; number=0012, A=3 o —==
(HL)
8
s number: o 0012 3 0
10 DB $01, $23 O prag
1 digits = $-number ;(2)
Effects SF | ZF HF ®V | NF | CF
vl 0 !l o -
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz

5 18 5,1us 2,57us 1,29us 0,64us

RST n ReSTart

(SP-1) «PCy
(SP-2) «PC;
SP«—SP-2
PCemn

RST $00 RST $20
RST $08 RST $28
RST $10 RST $30
RST $18 RST $38

Restarts at the zero page address s. Only above addresses are possible, all
in page 0 of the memory, therefore the most significant byte of the program
counter PC is loaded with $00. The instruction may be used as a fast response
to an interrupt.

Effects SF | ZF HF PV | NF | CF
No effect on flags = - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
3 11 3,1us 1,57us 0,79us 0,39us

168

CHAPTER 5. INSTRUCTIONS UP CLOSE

SBC d,s SuBtract with Carry
d«d-s-CF
8 bit 8 bit 16 bit
SBC A,A SBC A,IXH™ SBC HL,BC
SBC A,B SBC A, IXL™ SBC HL,DE
SBC A,C SBC A,IYH™ SBC HL,HL
SBC A,D SBC A,IYL™ SBC HL,SP
SBC A,E SBC A, (HL)
SBC A,H SBC A, (IX+d)
SBC A,L SBC A, (IY+d)
SBC A,n

Subtracts source operand s or contents of the memory location addressed by
s and carry flag CF from destination d. Result is then stored to destination

d.

Effects SF | ZF HF PA)| NF | CF
8-bit i))) 7 1
16-bit)))) 1

e 16-bit: HF set by carry from bit 11 (half
carry in high byte)

Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
r 1 4 1,1us 0,57us 0,29us 0,14us
n 2 7 2,0us 1,00us 0,50us 0,25us
(HL) 2 7 2,0us 1,00us 0,50us 0,25us
HL,rr 4 15 4,3us 2,14pus 1,07us 0,54us
(IX+d) 5 19 5,4us 2,71pus 1,36us 0,68us
(IY+d) 5 19 5,4us 2,71pus 1,36us 0,68us

SCF Set Carry Flag

CF«1

Sets carry flag CF.

Effects SF | ZF HF PV | NF | CF

- - 0 - 0 1
Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz

1 4 1,1us 0,57us 0,29us 0,14us

169

CHAPTER 5. INSTRUCTIONS UP CLOSE

SET b,s

SETAEZX

SET bit

Sp <1

SET b, A SET b, (IX+d) ,A™ SET b, (IY+d) ,A™
SET b,B SET b, (IX+d),B" SET b, (IY+d),B”
SET b,C SET b, (IX+d),C” SET b, (IY+d),C"
SET b,D SET b, (IX+d),D" SET b, (IY+d),D”
SET b,E SET b, (IX+d) ,E™ SET b, (IY+d) ,E™
SET b,H SET b, (IX+d) ,H SET b, (IY+d) ,H"
SET b,L SET b, (IX+d),L" SET b, (IY+d),L"”
SET b, (HL)

SET b, (IX+d)
SET b, (IY+d)

Sets bit b (0-7) of operand s or memory location addressed by s.

Note: undocumented variants work slightly differently:

SET b, (IX+d),r: SET b, (IY+d),r:

r<— (IX+d) r—(IY+d)

Iy «—1 Ty «—1

(IX+d) «r (IY+d) «r

Effects SF | ZF HF PV | NF | CF

No effect on flags - - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
r 2 8 2,3us 1,14pus 0,57us 0,29us
(HL) 4 15 4,3us 2,14us 1,07us 0,54us
(IX+d) 6 23 6,6us 3,29us 1,64us 0,82us
(IY+d) 6 23 6,6us 3,29us 1,64us 0,82us

SET Accumulator from E
A—unsigned ($80)>>(EAT)

Takes the bit number to set from E (only the low 3 bits) and sets the value of
the accumulator A to the value of that bit, but counted from top to bottom
(E=0 will produce A«$80, E=7 will produce A<—$01 and so on). This works
as pixel mask for ULA bitmap modes, when E represents x-coordinate 0-255.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
2 8 2,3us 1,14us 0,57us 0,29us

170

CHAPTER 5. INSTRUCTIONS UP CLOSE

SLA s Shift Left Arithmetic

[CF|]«{7«—0]«0

S
SLA A SLA (IX+d),A™ SLA (IY+d),A™
SLA B SLA (IX+d),B™ SLA (IY+d),B™
SLA C SLA (IX+d),c™ SLA (IY+d),c™
SLA D SLA (IX+d),D" SLA (IY+d),D"
SLA E SLA (IX+d),E™ SLA (IY+d),E™
SLA H SLA (IX+d),H™ SLA (IY+d),H™
SLA L SLA (IX+d),L™ SLA (IY+d),L™
SLA (HL)
SLA (IX+d)
SLA (IY+d)

Performs arithmetic shift left of the operand s or memory location addressed
by s. Bit 0 is forced to 0 and bit 7 is moved to CF.

Effects SF | ZF HF ®V | NF | CF
DR 0 0 o |1
Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
r 2 8 2,3us 1,14pus 0,57us 0,29us
(HL) 4 15 4,3us 2,14us 1,07us 0,54us
(IX+d) 6 23 6,6us 3,29us 1,64us 0,82us
(IY+d) 6 23 6,6us 3,29us 1,64us 0,82us
SLL Shift Left Logical

This mnemonic has no associated opcode on Next. There is no difference
between logical and arithmetic shift left, use SLA for both. Some assemblers
will allow SLL as equivalent, but unfortunately, some will assemble it as SLI,
so it’s best avoiding.

171

CHAPTER 5. INSTRUCTIONS UP CLOSE

*3k

SLI s Shift Left and Increment

g1 s Shift Left and add 1
[CF|]«{7 «0}«1

S

SLI A SLI (IX+d),A™ SLI (IY+d),A™
SLI B SLI (IX+d),B™ SLI (IY+d),B™
SLI C SLI (IX+d),c™ SLI (IY+d),c”
SLI D SLI (IX+d),D" SLI (IY+d),D"
SLI E SLI (IX+d),E™ SLI (IY+d),E™
SLI H SLI (IX+d),H™ SLI (IY+d),H™
SLI L SLI (IX+d),L™ SLI (IY+d),L™
SLA (HL)
SLA (IX+d)
SLA (IY+d)

Undocumented instruction. Similar to SLA except 1 is moved to bit 0.

Effects SF | ZF HF ®V | NF | CF
U 0 ! o | ¢

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz

r 2 8 2,3us 1,14pus 0,57us 0,29us

(HL) 4 15 4,3us 2,14ps 1,07us 0,54us

(IX+d) 6 23 6,6us 3,29us 1,64us 0,82us

(IY+d) 6 23 6,6us 3,29us 1,64us 0,82us

Note: most assemblers will accept both variants: SLI or SL1, but some may only
accept one or the other, while some may expect SLL instead.

172

CHAPTER 5. INSTRUCTIONS UP CLOSE

SRA s Shift Right Arithmetic
7—0
S
SRA A SRA (HL) SRA (IX+d),A™ SRA (IY+d),A™
SRA B SRA (IX+d) SRA (IX+d),B™ SRA (IY+d),B™
SRA C SRA (IY+d) SRA (IX+d),C™ SRA (IY+d),C™
SRA D SRA (IX+d),D™ SRA (IY+d),D™
SRA E SRA (IX+d),E™ SRA (IY+d),E™
SRA H SRA (IX+d),H™ SRA (IY+d),H™
SRA L SRA (IX+d),L™ SRA (IY+d),L™

Performs arithmetic shift right of the operand s or memory location addressed
by s. Bit 0 is moved to CF while bit 7 remains unchanged (on the assumption
that it’s the sign bit).

Effects SF | ZF HF ®V | NF | CF
U 0 0 o |1
Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz
r 2 8 2,3us 1,14us 0,57us 0,29us
(HL) 4 15 4,3us 2,14us 1,07us 0,54us
(IX+d) 6 23 6,6us 3,29us 1,64us 0,82us
(IY+d) 6 23 6,6us 3,29us 1,64us 0,82us
SRL s Shift Right Logical

0—+{7—0}+(CF|
S

SRL A SRL (HL) SRL (IX+d),A™ SRL (IY+d),A™
SRL B SRL (IX+d) SRL (IX+d),B™ SRL (IY+d),B™
SRL C SRL (IY+d) SRL (IX+d),C™ SRL (IY+d),C™
SRL D SRL (IX+d),D" SRL (IY+d),D™
SRL E SRL (IX+d),E™ SRL (IY+d),E™
SRL H SRL (IX+d),H™ SRL (IY+d),H™
SRL L SRL (IX+d),L™ SRL (IY+d),L™

Performs logical shift right of the operand s or memory location addressed
by s. Bit 0 is moved to CF while 0 is moved to bit 7.

Effects SF | ZF HF ®V | NF | CF
OB 0 0 o |1
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
r 2 8 2,3us 1,14pus 0,57us 0,29us
(HL) 4 15 4,3us 2,14us 1,07us 0,54us
(IX+d) 6 23 6,6us 3,29us 1,64us 0,82us
(IY+d) 6 23 6,6us 3,29us 1,64us 0,82us

173

CHAPTER 5. INSTRUCTIONS UP CLOSE

SUB s

SWAPNIBZX

TEST nZX

SUBtract
A—A-s

SUB A SUB n SUB IXH™
SUB SUB (HL) SUB IXL™
SUB SUB (IX+d) SUB IYH™
SUB SUB (IY+d) SUB IYL™
SUB
SUB
SUB

[l == 1 £ B w BN @ Ml v

Subtracts 8-bit immediate value, operand s or memory location addressed by
¢ from accumulator A. Then stores result back to A.

Effects SF | ZF HF P\)| NF | CF
DR 0 ! 117

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
r 1 4 1,1us 0,57us 0,29us 0,14us
n 2 7 2,0us 1,00us 0,50us 0,25us
(HL) 2 7 2,0ps 1,00us 0,50us 0,25us
(IX+d) 5 19 5,4us 2,71pus 1,36us 0,68us
(IY+d) 5 19 5,4us 2,71pus 1,36us 0,68us

SWAP NIBbles

A 7654|3210
b]

Swaps the high and low nibbles of accumulator A.

Effects SF | ZF HF PV | NF | CF
No effect on flags - - - - - -

Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
2 8 2,3us 1,14pus 0,57us 0,29us

TEST

Ann

Similar to CP (page ??), but performs an AND instead of a subtraction.

Effects SF | ZF HF ®V | NF | CF
v 7 ! t 7] 10
Timing Mc Ts 3.5MHz 7MHz 14MHz 28MHz

3 11 3,1us 1,57us 0,79us 0,39us

174

CHAPTER 5. INSTRUCTIONS UP CLOSE

XOR s bitwise eXclusive OR
A—Avs

XOR A XOR (HL) XOR IXH™
XOR XOR (IX+d) XOR IXL™
XOR XOR (IY+d) XOR IYH™
XOR XOR IYL™
XOR
XOR
XOR
XOR

B KH@DmMHUOOQW

Performs exclusive or between accumulator A and operand s or memory
location addressed by s. Result is then stored back to A. Individual bits
are XOR’ed like this:

A s | Result
0 O 0
0 1 1
1 0 1
1 1 0
Effects SF | ZF HF ®V | NF | CF
)) 0) 0 0
Timing Mc Ts 3.5MHz T7MHz 14MHz 28MHz
r 1 4 1,1us 0,57us 0,29us 0,14us
n 2 7 2,0us 1,00us 0,50us 0,25us
(HL) 2 7 2,0us 1,00us 0,50us 0,25us
(IX+d) H 19 5,4us 2,71us 1,36us 0,68us
(IY+d) 5 19 5,4us 2,71pus 1,36us 0,68us

175

CHAPTER 5. INSTRUCTIONS UP CLOSE

This page intentionally left empty

176

Appendix A

Instructions Sorted by Mnemonic

Instructions marked with **
Instructions marked wit

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD

177

L)
IX+d)

A
B
C
D
E
,H
,L
, 1
, (H
, (
, (IY+4d)

8F
88
89
8A
8B
8C
8D
CE n
8E
DDSE d
FD8E d
DD8C
DD8D
FD8C
FD8D
ED4A
ED5SA
ED6A
ED7A
87
80
81
82
83
84
85
C6 n

DD86
FD86 d
DD84
DD85
FD84
FD85
ED33
ED36 m n

(o}

h_ZX

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
BIT
BIT
BIT
BIT
BIT

are undocumented.
are ZX Spectrum Next extended.

DE,AZX

DE,nm?X

HL,AZX
HL,BC
HL,DE
HL,HL
HL,SP

HL,nm?X

IX,BC
IX,DE
IX,IX
IX,SP
IY,BC
IY,DE
IY,IY
IY,SP

D HOQwWe

n
(HL)
(IX+d)
(IY+d)

xH"
XL
IYH™

*%

IYL

ED32
ED35
ED31
09

DDA6
FDAG
DDA4
DDAS
FDA4
FDA5
CB47
CB40
CB41
CB42
CB43

m

m

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
1
1

X+d)

L)
IX+d)
X+d)""
X+d) ™"
x+d) ™"
X+d) ™"

x+d) ™"

H
L
(HL
(I
(I
(I
(I
(I
(I
(I
(I
(I
(
(I
(1
(I
(I
(I
(I
A
B
C
D
E
H
L
(H
(
(I
(1
(I
(1
(1
(

,(Ix+) ™"
L (IX+) ™"

CB44
CB45
CB46
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
FDCB
FDCB
FDCB
FDCB
FDCB
FDCB
FDCB
FDCB
CB4F
CB48
CB49
CB4A
CB4B
CB4C
CB4D
CB4E
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB

[sTRNN o PRy o PNy o P o MR o PN © PR e PR e Pl e R o P o P e Pl e i o Tl o

[oTIN o PNy o P o TN o P e PR e Pl o

46
40
41
42
43
44
45
47
46
40
41
42
43
44
45
47

4E
48
49
4A
4B
4C
4D
4F

APPENDIX A. INSTRUCTIONS SORTED BY MNEMONIC

BIT 1, (IY+d) FDCB d 4E BIT 3,(IY+d)™™ FDCB d 5F BIT 6, (HL) CB76

BIT 1,(IY+d)"" FDCB d 48 BIT 4,A CB67 BIT 6, (IX+d) DDCB d 76
BIT 1,(IY+d)™ FDCB d 49 BIT 4,B CB60 BIT 6,(IX+d)"" DDCB d 70
BIT 1,(IY+d)™ FDCB d 4A BIT 4,C CB61 BIT 6,(IX+d)"" DDCB d 71
BIT 1,(IY+d)”" FDCB d 4B BIT 4,D CB62 BIT 6,(IX+d)™ DDCB d 72
BIT 1,(IY+d)”™ FDCB d 4C BIT 4,E CB63 BIT 6,(IX+d)™™ DDCB d 73
BIT 1,(IY+d)"™ FDCB d 4D BIT 4,H CB64 BIT 6,(IX+d)"" DDCB d 74
BIT 1,(IY+d)™ FDCB d 4F BIT 4,L CB65 BIT 6,(IX+d)™ DDCB d 75
BIT 2,A CB57 BIT 4, (HL) CB66 BIT 6,(IX+d)"™ DDCB d 77
BIT 2,B CB50 BIT 4,(IX+d) = DDCB d 66 BIT 6, (IV+d) FDCB d 76
BIT 2,C CB51 BIT 4,(IX+d) = DDCB d 60 BIT 6,(IV+d)”™™ FDCB d 70
BIT 2,D CB52 BIT 4,(IX+d) = DDCB d 61 BIT 6,(IY+d)”" FDCB d 71
BIT 2,E CB53 BIT 4,(IX+d)** DDCB d 62 BIT 6, (IY+d)™™ FDCB d 72
BIT 2,H CB54 BIT 4, (IX+d) DDCB d 63 BIT 6, (IY+d)™™ FDCB d 73
BIT 2,L CB55 BIT 4, (IX+d)™ DDCB d 64 BIT 6, (I¥+d)”" FDCB d 74
BIT 2, (HL) CB56 BIT 4, (IX+d)”" DDCB d 65 BIT 6, (I¥+d)™ FDCB d 75
BIT 2, (IX+d) DDCB d 56 BIT 4, (IX+d) DDCB d 67 BIT 6, (I¥+d)™ FDCB d 77
BIT 2,(IX+d)™ DDCB d 50 BIT 4, (I¥+d) ~ FDCB d 66 BIT 7.A CBTF

BIT 2, (1 X+d) DDCB d 51 BIT 4,(IY+d)** FDCB d 60 BIT 7,B CB78

BIT 2, (IX+d)™™ DDCB d 52 BIT 4, (IY+d) FDCB d 61 BIT 7,C CB79

BIT 2,(IX+d)™ DDCB d 53 BIT 4,(IY+d)™ FDCB d 62 BIT 7,D CB7A

BIT 2, (IX+d)™" DDCB d 54 BIT 4, (IY+d)™ FDCB d 63 BIT 7,E CB7B

BIT 2, (IX+d)”™™ DDCB d 55 BIT 4,(IY+d)"™" FDCB d 64 BIT 7,H CB7C

BIT 2, (IX+d)™™ DDCB d 57 BIT 4,(IY+d)"" FDCB d 65 BIT 7,L CB7D

BIT 2, (IY+d) FDCB d 56 BIT 4,(IY+d)"" FDCB d 67 BIT 7, (HL) CB7E

BIT 2,(IY+d)™ FDCB d 50 BIT 5,A CB6F BIT 7, (IX+d) DDCB d 7E
BIT 2, (IY+d)™ FDCB d 51 BIT 5,B CB68 BIT 7,(IX+d)™™ DDCB d 78
BIT 2,(IY+d)"™™ FDCB d 52 BIT 5,C CB69 BIT 7,(IX+d)"" DDCB d 79
BIT 2,(IY+d)™ FDCB d 53 BIT 5,D CB6A BIT 7,(IX+d)"" DDCB d 7A
BIT 2,(IY+d)™ FDCB d 54 BIT 5,E CB6B BIT 7,(IX+d)"" DDCB d 7B
BIT 2,(IY+d)”" FDCB d 55 BIT 5,H CB6C BIT 7,(IX+d)"~ DDCB d 7C
BIT 2,(IY+d)™™ FDCB d 57 BIT 5,L CB6D BIT 7,(IX+d)"" DDCB d 7D
BIT 3,A CBSF BIT 5, (HL) CB6E BIT 7,(IX+d)”" DDCB d 7F
BIT 3,B CB58 BIT 5,(IZ+d) = DDCB d 6E BIT 7, (IY+d) FDCB d 7E
BIT 3,C CB59 BIT 5,(IX+d) = DDCB d 68 BIT 7,(IY+d)"" FDCB d 78
BIT 3,D CB5A BIT 5,(IX+d) = DDCB d 69 BIT 7,(IY+d)"" FDCB d 79
BIT 3,E CBS5B BIT 5,(IX+d) = DDCB d 6A BIT 7,(IY+d)”" FDCB d 7A
BIT 3,H CB5C BIT 5,(IX+d)** DDCB 4 6B BIT 7, (IY+d)™ FDCB d 7B
BIT 3,L CB5D BIT 5, (IX+d)™ DDCB d 6C BIT 7, (IY+d)™ FDCB d 7C
BIT 3, (HL) CB5E BIT 5, (IX+d)™ DDCB d 6D BIT 7,(IY+d)™ FDCB d 7D
BIT 3, (IX+d) ~ DDCB d S5E BIT 5, (IX+d) DDCB d 6F BIT 7, (IY+d)™ FDCB d 7F
BIT 3, (IX+d)™™ DDCB d 58 BIT 5, (IY+d) FDCB d 6E BRLC DE,B%X ED2C

BIT 3, (IX+d) DDCB d 59 BIT 5, (IY+d) FDCB d 68 BSLA DE,B%X EDo8

BIT 3,(IX+d)™™ DDCB d 5A BIT 5,(IY+d)"" FDCB d 69 BSRA DE,BZX ED29

BIT 3,(IX+d)"" DDCB d 5B BIT 5,(IY+d)"~ FDCB d 6A BSRF DE,B%X ED2B

BIT 3,(IX+d)™™ DDCB d 5C BIT 5,(IY+d)"" FDCB d 6B BSRL DE,B%X ED2A

BIT 3,(IX+d)"™™ DDCB d 5D BIT 5,(IY+d)"™™ FDCB d 6C CALL nm CDmn
BIT 3,(IX+d)"" DDCB d 5F BIT 5, (IY+d)"™ FDCB d 6D CALL C,nm DC m n
BIT 3, (IY+d) FDCB d 5E BIT 5, (IY+d)"" FDCB d 6F CALL M,nm FCm n
BIT 3,(IY+d)"" FDCB d 58 BIT 6,A CB77 CALL NC,nm D4 mn
BIT 3,(IY+d)"" FDCB d 59 BIT 6,B CB70 CALL NZ,nm C4 mn
BIT 3, (IV+d)™ FDCB d 5A BIT 6,C CB71 CALL P,nm Fimn
BIT 3, (IY+d)™ FDCB d 5B BIT 6,D CB72 CALL PE,nm ECmn
BIT 3,(IY+d)** FDCB d 5C BIT 6,E CB73 CALL PO,nm E4 m n
BIT 3,(IY+d)** FDCB d 5D BIT 6,H CB74 CALL Z,nm CCmn

BIT 6,L CB75 CCF 3F

178

APPENDIX A. INSTRUCTIONS SORTED BY MNEMONIC
CP A BF M 1 ED56 LD (HL),A 77
CP B B8 m 2" ED7E LD (HL),B 70
CP C B9 M 2 EDSE LD (HL),C 71
CP D BA IN A, (C) ED78 LD (HL),D 72
CP E BB IN A, (n) DB n LD (HL),E 73
CP H BC IN B, (C) ED40 LD (HL),H 74
CP L BD IN C,(C) ED48 LD (HL),L 75
CP n FE n IN D, (C) ED50 LD (HL),n 36 n
CP (HL) BE IN E, (C) ED58 LD (IX+d),A DD77 d
CP (IX+d) DDBE d IN F, ()" ED70 LD (IX+d),B DD70 d
CP (IY+d) FDBE d IN H, (C) ED60 LD (IX+d),C DD71 d
CP IXH™ DDBC IN L, (C) ED68 LD (IX+d),D DD72 d
cp IxXL™ DDBD IN (¢)** ED70 LD (IX+d),E DD73 d
CP IYH™ FDBC INC (HL) 34 LD (IX+d),H DD74 d
cp 1YL™ FDBD INC (IX+d) DD34 d LD (IX+d),L DD75 d
CPDR EDB9 INC (IY+d) FD34 d LD (IX+d),n DD36 d n
CPD EDA9 INC A 3C LD (IY+d),A FD77 d
CPIR EDB1 INC B 04 LD (IY+d),B FD70 d
CPI EDA1 INC C oC LD (IY+d),C FD71 d
CPL oF INC D 14 LD (IY+d),D FD72 d
DAA 27 INC E 1C LD (IY+d),E FD73 d
DEC (HL) 35 INC H 24 LD (IY+d),H FD74 d
DEC (IX+d) DD35 d INC L 2C LD (IY+d),L FD75 d
DEC (IY+d) FD35 d INC BC 03 LD (IY+d),n FD36 d n
DEC A 3D INC DE 13 LD (nm),A 32 mn
DEC B 05 INC HL 23 LD (om),BC ED43 m n
DEC C oD INC IX DD23 LD (nm),DE ED53 m n
DEC D 15 INC IXH™ DD24 LD (nm),HL 22 mn
DEC E 1D INC IxXL** DD2C LD (am),HL ED63 m n
DEC H 25 INC IY FD23 LD (am),IX DD22 m n
DEC L 2D INC IYH™ FD24 LD (am),IY FD22 m n
DEC BC 0B INC IyL™ FD2C LD (nm),SP ED73 m n
DEC DE 1B INC SP 33 LD A,A TF
DEC HL 2B INDR EDBA LD A,B 78
DEC IX DD2B IND EDAA LD A,C 79
DEC IXH™ DD25 INIR EDB2 LD A,D 7A
DEC IXL"" DD2D INI EDA2 LD ALE 7B
DEC IY FD2B JP (O)%X ED98 LD A.H 7C
DEC IYH™ FD25 JP (HL) E9 LD A,I ED57
DEC IYL™ FD2D JP (IX) DDE9 LD A,L 7D
DEC SP 3B JP (IY) FDE9 LD A,R EDSF
DI F3 JP nm C3mn LD A,n 3E n
DJINZ (PC+e) 10 e JP C,nm DA mn LD A, (BC) 0A
EI FB JP M,nm FA m n LD A, (DE) 1A
EX (SP),HL E3 JP NC,nm D2 mn LD A, (HL) 7E
EX (SP),IX DDE3 JP NZ,nm C2mn LD A, (IX+d) DD7E d
EX (SP),IY FDE3 JP P,nm F2 m n LD A, (IY+d) FD7E d
EX AF,AF’ 08 JP PE,nm EA m n LD 4, (om) 3Amn
EX DE,HL EB JP PO,nm E2 mn LD A,IXH** DD7C
EXX D9 JP Z,nm CAmn LD A,IXL** DD7D
HALT 76 JR e 18 e LD A,IVH FD7C
Mo ED4E JR C,e 38 e LD A,IyL™ FD7D
i 0™ ED66 JR NC,e 30 e LD B,A 47
m o™ ED6E JR NZ,e 20 e LD B,B 40
IM 0 ED46 JR Z,e 28 e LD B,C 41
w1 ED76 LD (BC),A 02 LD B,D 42

LD (DE),A 12 LD B,E 43

179

APPENDIX A. INSTRUCTIONS SORTED BY MNEMONIC
LD B,H 44 LD E,IXL™" DD5D LD L,D 6A
LD B,L 45 LD E,IYH " FD5C LD L,E 6B
LD B,n 06 n LD E,IYL™" FD5D LD L,H 6C
LD B, (HL) 46 LD H,A 67 LD L,L 6D
LD B, (IX+d) DD46 d LD H,B 60 LD L,n 2E n
LD B, (IY+d) FD46 d LD H,C 61 LD IYL,n™" FD2E n
LD B,IXH" DD44 LD H,D 62 LD L, (HL) 6E
LD B,IXL"" DD45 LD H,E 63 LD L, (IX+d) DD6E d
LD B,IYH™ FD44 LD H,H 64 LD L, (IY+d) FD6E d
LD B,IVL"™ FD45 LD H,L 65 LD R,A ED4F
LD BC, (nm) ED4B m LD H,n 26 n LD SP, (nm) ED7B m n
LD BC,nm 0l mn LD H, (HL) 66 LD SP,HL F9
LD C,A 4F LD H, (IX+d) DD66 d LD SP,IX DDF9
LD C,B 48 LD H, (IY+d) FD66 d LD SP,IY FDF9
LD C,C 49 LD HL, (nm) 2A m n LD SP,nm 31mn
LD C,D 4A LD HL, (nm) ED6B m LDD EDAS
LD C,E 4B LD HL,nm 21 m n LDDR EDBS
LD C,H 4C LD I,A ED47 LDDX%X EDAC
LD C,L 4D LD IX, (nm) DD2A m LDDRX%X EDBC
LD C,n OE n LD IX,nm DD21 m LDI EDAO
LD C, (HL) 4E LD IXH,A™" DD67 LDIR EDBO
LD C, (IX+d) DD4E d LD IXH,B™ DD60 LDIX?X EDA4
LD C, (IY+d) FDAE d LD IXH,C* DD61 LDIRX*X EDB4
LD C,IXH DD4C LD IXH,D™ DD62 LDPIIZ%))EZX EDBY
LD C,IXL"” DD4D LD IXH,E™ DD63 LDWS™ EDA5
LD C,IVH" FD4C LD IXH,IXH" DD64 MIRROR fZ\X ED24
LD C,IYL" FD4D LD IXH,IXL™ DD65 MUL D,E ED30
LD D,A 57 LD IXH,n"" DD26 n NEG ED4C
LD D,B 50 LD IXL,A"™ DD6F NEG | ED54
LD D,C 51 LD IXL,B** DD6ES NEG** ED5C
LD D,D 52 LD IXL,C** DD69 NEG** ED64
LD D,H 54 LD IXL,E™ DDEB NEG ED74
LD D,n 16 n LD IXL IXL™ DDSD NEG ED44

- ZX
LD D, (HL) 56 LD IXL,n DD9E n NEXTREG r,nZX ED91 r n
LD D, (IX+d) DD56 d LD 1V, (om) FDOA m NEXTREG r,A ED92 r
LD D,(IY:S) FD56 d LD IV om FD21 m NOP 00
LD D, IXH DD54 LD IYH A™ S OR A B7
LD D,IXL™ DD55 LD IVH.B™ FDEO grRt 2 Eci)
LD D,IVH FD54 Ip IVH.C™ FDE1 0 ¢ B!
LD D,IYL FD55 Ip IVH.D™ D62
LD DE, (nm) ED5B m - OR E B3
’ LD IYH,E FD63
LD DE,nm 11mn LD IYH,IYH™ FD64 OR H Ba
LD E,A oF LD IYH’IYL** FD65 0R L Bs
LD E,B 58 by OR n F6 n
ID E.C S LD IVH,n" FD26 n OR (HL) B6
LD E,D 5A LD IVL,A FDEF OR (IX+d) DDB6 d
LD E,E 5B LD IYL,B | FD68 OR (IY+d) FDB6 d
LD E,H 5C LD IYL,C | FD69 OR IXH™ DDB4
LD E,L 5D LD IYL,D FD6A OR IXL" DDBS
LD E,n 1E n LD IVL,E™ FD6B OR IYH™ FDB4
LD E, (HL) 5E LD IVL,IYH FD6C OR IYL™ FDB5
LD E, (IX+d) DD5E d LD IYL,IYL FD6D OTDR EDBB
LD E, (IY+d) FDSE d LD L,A 6F OTIR EDB3
LD E,IXH™" DD5C LD L,B 68 ouT (C),0™ ED71
LD L,C 69

180

. NST
RU
QUT (CTIONS
ol C),B D BY
T (’ ED M
UT 0),C 79 NEMO
©. ED41 NIC
) ED49 RE
ouT ,E ED S 1, L
QUTD n),A ED 1 RES 1 X+d) CBSE
0UTI D369 RES 1 EIXW) A DDCB RES
0 n RE IX+ d 8 3
XEL EDA 1 a) ¢ DCB F RE ,(IX JH
p ADZX 3 RE (Ix+d) | ds S 3 +d) L DDC
POP ADNZX EDgo RES 1’(Ix+d)’D DDC d 89 RES 3 (IY+d) DDCB d i~
F 4 , (,E” B S 3 +d F 9D
POP RES IX+d D d 8A 3) A** DCB
BC ED93 1), 0 DCB RES , (IY+ ’ F d o9
POP RES (TX+) ds8 3 a),B™ DCB E
D F1 1 4,1 DDC B R , (1Y ,B d
POP HE c1 RES 1’(IY+d)’L DD B d 8C ES 3,0 +d),¢” FDCB d oF
P L R , (I CB d RES Y+d FD 98
ng IX D1 REs 1 (IY+d) o FDCB d 8D RES 3’(IY+d§’D** FDCB 4 99
P E ES , (IY+d ’ F 8E 3 EY CB
1Y 1 1 y.B** DCB RE , (IY ’ d
PUS R , (IY B d S +d) ,H" FD 9A
H DDE ES +q) FD 8F 3, JH CB
oo B oot RES 1’(IY+ d;sc** ani 4 88 res 4, Y+d) L™ FDCB 3 9B
iUSH oF F5 RES 1, (Iy+d) ’E** FDCB d 89 REz 4,B FDCB d o~
PUSH IX D5 RES 2, gIY+d) ’L** FDCB d 8B RES 4 D CBAO
USH E5 RES ’ ds 4.E BA1
R nmZX 5 2.C B97 D RES o
RES 0,A FDE5 RES 2’ CB90 RES 4 L BA3
ES 0 EDS RES ,D c R 4,(H CBA4
el oo s B91 ES 4, L) CBA
0 B87 m ES 2 CB R (IX 5
RES O’C CB RES H 92 ES 4, +d) CBAG
RES ,D c 80 RE 2,L CB93 RES 4, (IX+d), DDCB
RES 0.E CE81 RES 2, (HL) o RES 4, (1X+d), A" DDCB d A6
R 0,H 82 S 2, CB95 RE (IX+ B” d
ES 0.L CBS3 RES 2. (IX+d) CBS . S 4,(I a,c™ DDCB d A7
RES O’ CBS RES (IX+d D 6 ES 4, X+d),D"" DDCB A0
RES , (HL) 4 2, (I), A DCB d RES (IX+d DD d Al
RES . (T i RES 2, (I X+d) B oncP 4 o7 RES 4 (IX+d) JE” D CB d A2
0,(d) CB86 RES 2, X+d), DD d 97 4,(I) H** DCB d
RES 0 IX+d), A bbe RES (IX+ c” D CB d9 RES 4, X+d), DDCB A3
RES 0, (IX+d) ’A* DDCB d 86 RES 2,(1 X+d) D DDCB d 90 RES 4, (Iy+d) L™ DDCB d A4
RES O’(IX"'d),B** DDCB d 87 RE 2,(I X+d) B DDCB d 91 RES 4, (IY+d), FDCB d A5
RES O’(IX+d)’C: DDCB d 80 RE: 2, (Ix+d) B DDCB d 92 RES 4, (Iy+d), A" FDCB d A6
RES O,(IX"'d),D** DDCB d 81 RES 2, (I Y+d) L** DCB d 93 RES 4, (1 Y+d) B FDCB d A7
RES » (IX+d HTD Bds R 2, (d),A™ DCB d > RES (IY+d ;D" FD d A1
0 Y.L DCB 3 ES Y+d FD 96 4,(1),E” CB
RES 0’(IY+d), DDC d 84 RE 2, (IY+ Vs B CB d 9 RES 4, Y+d), FDC d A2
RES 0, (IY+)’A** F CB d 8 ES 2 (I Iv+d), D FDCB 90 RES ;A L F CB d A4
RE O’(IY+d)’B** DCB d 86 RES 2, (I Y+d) ,E FDCB d 91 RES 5,B CDCB d A
S 0,(a),c” FDCB 7 RES v+d), FD d 92 e o
RES , (IY+d F d 80 R 2,01 H™ CB d ES 5 CB
0,(),D"" DCB ES 3, Y+d), FD 93 R ,D A8
RES O, Iy+d) .E™ FDC d 81 RES A L F CB d 9 ES 5.E CBA9
RES O’ (IY+d) ’E** FDCE d 82 RES 2 B CECB d 9;]: igs 5:H CBAA
RES 1,§IY+d):L** FDCB d 83 RES S,C CBgF RE: 5,L CBAB
RES 1’B FDCB d 84 RES 3,D o 8 RE 5, (HL CBAC
RES 1, coen RES 5.1 o 55,) CBAD
RES ,C c 8F RE 3,H CB9A RES 5, X+d) CBAE
ES C RE »L 5, d), DDCB
R 1,E B89 S 3 CBOC RE (X+ A" q A
ES 1 CBSA RES 3’(HL) CB S 5, (I d), B DDCB d E
oH CBSB RES 3’(IX+d) CBgD EES 5, (I §+d) Nl DDCB d AF
E E + A
CBSC igs 3, EI§+d) o DDCB d RE: 2 (1 X+j; p** gggB d Az
S +d DD 9E E™ B
R 3,(IX),B” CB d RES (IX+d DD d AA
ES +d D 9F 5,), B CB
3 y,c* DCB RES (X+ d A
RES , (IX+d ’ D d 9 5, a,L™ DDCB B
, (IX d S 5, d) DD C
,E~ DD d 9A 5, (®,8" DCB D
R , (IY d
RES 5’(Iyid)’c FDCB d iF
§ 5, (1Y a),D”" FDCB d e
FDCB d AA
AB

181

RES 5, (A
,(IY+d) ,H™ PPEND
JH IX
RES 5, (Iy+d) ,L** FDCB d AC A. INSTRUCT
RES 6 L7 FD IONS S
A CB d AD RET P ORTED
RES 6,B CBB BY MNE
, 7 RET Z FO MONIC
RES 6 CB
RES 6 C D4D RLC ,D
RES G,E CBB2 RETN ED55 RLC (IY+d) ,E™ FDCB d 02
,H BB3 RETN™ (IY+ ’ FDCB
RES 6 c Ty ED5D R 4,1 d 03
L BB4 \ LC CF
RES 6, (HL) CBB5 gETN* ED65 RLCA(IY+d) L7 Fggi d 04
RES 6, (IX+d) CEB6 RETN** ED6D RLD o7 d 05
RES 6, (IX+d),A™ DDCB d B6 REiE ED75 RR A EDEF
RS 6, (TX+dy A7, oo 4 7 NET ED7D R B CBIF
S 6, (I ’ DDC 5 R C C
, (IX+4d) ok B d BO RL A B18
,(IX+d) , D DCB d B RL CB19
> IX+d) Kk CB d B RL C C B1A
RES 6, (,E DD 2 B10 RR H CB
, (IX+4d) ok CB d B RL D C 1B
RES 6 ,H D 3 B11 RR L C
,(IX+d) ,L” DCB d RL E B1C
RES 6),L * B4 CB12 RR (H C
, (IY DDCB RL L) B1D
RES 6, (IY:j; . FDCB 3 25 RL E gElS RR (IX+d) CB1E
RES 6 A" FD 6 14 RR (IX+d),A™ DDCB
, (Iy+d) ,B™ CB d B7 RL (HL) CB15 R d),A d 1E
RES 6 ’ FDC R R (IX+ . DDCB
RE , (IY+4d) ot B d BO L (IX+d) CB16 RR d),B d 1F
S 6’(IY+d),D** FDCB d B1 RL (IX+d),A™* DDCB d AR (I1x+d) ,c** DDCB d 18
EES 6, (Iy+d) E” FDCB d B2 RL (IX+d)’A** DDCB d S RR EIX"d),D** DDCB d 19
, (IY+d) ok B d B3 (IX+ * DDCB),E d 1A
RES 6. (™ FD @,c” d 10 RR (IX DDC
,(TY+d) L CB d B RL (IX+ DDC +d) 1 B d 1B
RES 7), LT F 4 4,0 B d 11 RR (IX+d) | DD
RES > A DCB d B5 RL (IX+d),E DDCB d 1 AR (+d) L™ CB d 1C
7,8 CBBF RL (IX+d) H' DDCB 2 B IY+d) DDCB d 1D
RES 7,C CBBS RL (d,H” d 13 R (IY+d),A™ FDCB d
7,D CBB9 RL (,L D 14 (IY+d) B** FDCB d
RES IY+d) DCB d RR > 1F
7,E CBBA RL (F 15 (IY+d) ,c** FDCB d
RES 7 c IY+d) ,A™ DCB d 1 RR ,C 18
,H BBB RL (’ F 6 (IY+d) - FDCB d
RES 7 c IY+d),B™ DCB d RR ,D 19
,L BBC RL (s F 17 (IY+d) % FDCB d
RES 7 C Iy+d),c™ DCB d RR ,E 1A
RES » (HL) oo RL (IY+d),c* FDCB > R (TY+d) 1 FDCB d 1B
7, (IX+ CBBE R D" d 11 R (Iy+d) L™ FDCB
RES 7,(IX+§11; . DDCB d BE RII: (1¥+d) ,E '~ FDCB d 12 RRA D FDCB 3 i~
RES 7:(IX+d)’g** DDCB d BF AL EIYH),H** ;DCB d 13 RRC A i
RES 7 B DDCB IY+d),L"” DCB d 1 RRC B CB
,(IX+d) ,c*™ d BS RLA F 4 OF
RES 7 ,C DD DCB d RRC C C
RES > (IX+d) D** 5 CB d B9 RLC A 17 15 RRC B0O8
7. (1X+d) DCB R D CBO9
, (IX+d) ,E d BA LC B CB
, (IX+d sk DCB d B RLC BOA
RES 7, (y,H™ DD B C CB0O RRC H oB
L (IX+d) L™ CB d B RLC D o OB
RES 7, (),L7 D c BO1 RRC L CB
, (IY+4d) DCB d B RIC E CB 0C
RES 7 F D 02 RRC (H CB
L (IY+d) A" DCB d B RLC H C L) oD
, (IY o DCB d RLC X+d) OE
RES 7 +d) ,B™ FD BF R L CB04 RRC (IX i DDCEB
RE , (IY+d) ¢ CB d B8 LC (HL) CBOS RRC #d),A" D d OE
R S 7, (IY+d) ,D** FDCB d B9 RLC (IX+d) CBO6 RRC (IX+d) ,B>k>|< DCB d OF
RE: 7,(Iv+a) B FDCB d BA RLC (IX+d),A"™ DDCB d 06 RRC EIXJ'd),c** EDCB d 08
7, (IY+ ’ FDCB RLC g D IX+d) D™ DCB d
, (IY+d) ,H™ d BB (IX+d),B™ DCB R »D 09
RES 7 AT F),B d o7 RC (I DDC
, (Iv+d) L DCB d RLC (IX+d), DDC X+d) ,E” B d OA
CB d RLC (I > DDC x+d) B CB d OB
RET M D8 BD R X+d),D™ B d 01 RRC (TX+d), DD
L P X+ * CB
RET C (IX+d) ,E™ DDCB d 02 RRC (d,L * D d 0C
NC F8 RLC (’ DD IY+d) DCB d 0
RET IX+d) ,H CB d O RRC F D
NZ DO RLC ,H D 3 (IY+4d) sk DCB d
RET (IX+d) ok DCB d RRC ,A OE
PE co RLC ,L D 04 (IY+d) ok FDCB d
RET PO E8 AL EIY+d> DG d 05 T) o e o
1Y+d ok DCB R ,C * 8
EO RL), A d 06 RC (IY FDCB
C (Iv+d) ,B™ FDCB +d),D0"" d 09
RLC d),B F d 07 RRC (IY+d) sk FDCB d
(IY+d % DCB R ,E OA
).C FD d 00 RC (IV+d),H™ FDCB d 0
CB d 01 RRC (’ FD B
Iv+d) . L™ CB
RRCA),L Do d oc
0 B d OD
F

182

APPENDIX A. INSTRUCTIONS SORTED BY MNEMONIC
RRD ED67 SET 1,D CBCA SET 3, (IX+d),C”™ DDCB d D9
RST OH c7 SET 1,E CBCB SET 3, (IX+d),D™ DDCB d DA
RST 10H D7 SET 1,H CBCC SET 3, (IX+d),E"" DDCB d DB
RST 18H DF SET 1,L CBCD SET 3. (1x+d) K™ DDGB d DC
RST 208 E7 SET 1, (HL) CBCE SET 3, (IX+d),L™" DDCB d DD
RST 28H EF SET 1, (IX+d) DDCB d CE SET 3. (IY+d) FDCB d DE
RST 30H F7 SET 1, (IX+d),A”™" DDCB d CF SET 3, (IY+d),A™ FDCB d DF
RST 38H FF SET 1, (IX+d),B”" DDCB d C8 SET 3, (IY+d),B"* FDCB d D8
RST 8H CF SET 1, (IX+d),C™" DDCB d C9 SET 3. (IY+d) .G FDCB d D9
SEC 4,4 9F SET 1, (IX+d),D** DDCB d CA SET 3, (IY+d).D™ FDCB d DA
SBC 4.B 98 SET 1, (IX+d),E"~ DDCB d CB SET 3, (IV+d),E*" FDCB d DB
SBC 4,C 99 SET 1, (IX+d),H"™ DDCB d CC SET 3. (IY+d) H™ FDCB d DC
SBC 4.D oA SET 1, (IX+d),L™ DDCB d CD SET 3. (IY+d) .L"™* FDCB d DD
SEC A,E 9B SET 1,(I¥+d) FDCB d CE SET 4.4 CBE7
SBe AT o~ SET 1, (I¥+d),A" FDCB d CF SET 4.B CBEO
She AL o SET 1,(IY+d),B”" FDCB d C8 SET 4,C CBE1
:gg ﬁ’?HL) o SET 1,(I¥+d),C”" FDCB d €9 SET 4,D CBE2
SBC A, (IX+d) DOE d SET 1, (I¥+d),D"”" FDCB d CA SET 4,E CBE3
SBC A, (IY+d) FDOE d SET 1,(I¥+d),E™ FDCB d CB SET 4,H CBE4
SBC A, TXE™ DoC SET 1, (I¥+d),H"" FDCB d CC SET 4,L CBES
SBC A,TXL™ DD9D SET 1,(IY+d),L” FDCB d CD SET 4, (HL) CBE6
SBC A, IYH™ FDoC SET 2,A CBD7 SET 4, (IY+d) FDCB d E6
SEC A TYL™ 09D SET 2,B CBDO SET 4, (IX+d) ,A™™ DDCB d E7
SEC HL. BO FDao SET 2,C CBD1 SET 4, (IX+d), B** DDCB d EO
SBC HL.DE ED52 SET 2,D CBD2 SET 4, (IX+d),C™ DDCB d E1
SBC HLHL ED62 SET 2,E CBD3 SET 4, (IX+d),D"" DDCB d E2
SBC HL,SP ED72 SET 2,H CBD4 SET 4, (IX+d),E™ DDCB d E3
SCF 37 SET 2,L CBD5 SET 4, (IX+d),H"" DDCB d E4
SET 0,A CBCT SET 2, (HL) CBD6 SET 4, (IX+d),L"™ DDCB d E5
SET 0,B CBCO SET 2, (I1X+d) DDCB d D6 SET 4, (I¥+d) FDCB d E6
SET 0,C CBC1 SET 2, (IX+d),A " DDCB d D7 SET 4, (IY+d),A" FDCB d E7
SET 0,D CBC2 SET 2, (1X+d),B" DDCB d DO SET 4, (Iv+d),B™ FDCB d EO
SET 0,E CBC3 SET 2, (I¥+d),C’" DDCB d D1 SET 4, (IY+d),C™ FDCB d E1
SET 0,H CBC4 SET 2, (IX+d),D"" DDCB d D2 SET 4, (IY+d),D™ FDCB d E2
SET 0,L CBC5S SET 2, (IX+d), E™ DDCB d D3 SET 4, (IY+d), E™ FDCB d E3
SET 0, (HL) CBC6 SET 2, (IX+d),H " DDCB d D4 SET 4, (IY+d),H"" FDCB d E4
SET 0, (IX+d) DDCB d C6 SET 2, E X+d; ,L"™" DDCB d D5 SET 4, (IY+d),L*" FDCB d E5
SET 0, (IX+d),A™" DDCB d C7 SET 2, (I¥+d FDCB d D6 SET 5,A CBEF
SET 0, (IX+d),B™™ DDCB d CO SET 2, (IY+d),A” FDCB d D7 SET 5,B CBES
SET 0, (IX+d),C™ DDCB d C1 SET 2, (IY+d),B” FDCB d DO SET 5,C CBE9
SET 0, (IX+d),D™™ DDCB d C2 SET 2, (I¥+d),C"" FDCB d D1 SET 5,D CBEA
SET 0, (IX+d),E” DDCB d C3 SET 2, (IY+d),D”" FDCB d D2 SET 5,E CBEB
SET 0. (IX+d) .H™ DDCB d C4 SET 2, (IY+d),E*" FDCB d D3 SET 5,H CBEC
SET 0, (IX+d),L"* DDCB d C5 SET 2, (IY+d),H"" FDCB d D4 SET 5,L CBED
SET 0, (IY+d) FDCB d C6 SET 2, (IY+d),L”™ FDCB d D5 SET 5, E L)) CBEE
+ o SET 3,A CBDF SET 5, (IX+d DDCB d EE
:Eg 8:Ei¥+3;:g** Eggg 3 gg SET 3,B CBD8 SET 5, (IX+d),A™ DDCB d EF
SET 0, (IY+d),C™™ FDCB d C1 SET 3,C CBD9 SET 5, (IX+d),B”" DDCB d E8
SET 0, (I¥+d),D"* FDCB d C2 SET 3,D CBDA SET 5, (IX+d),C"™ DDCB d E9
SET 0, (IY+d),E™ FDCB d C3 SET 3,E CBDB SET 5,(IX+d),D"" DDCB d EA
SET 0, (IY+d),H™ FDCB d C4 SET 3,H CBDC SET 5, (IX+d),E”" DDCB d EB
SET 0, (IY+d),L™™ FDCB d C5 SET 3,L CBDD SET 5, (IX+d) ,H™ DDCB d EC
SET 1,A CBCF SET 3, (HL) CBDE SET 5, (IX+d),L"* DDCB d ED
SET 1,B CBCS SET 3, (IV+d) FDCB d DE SET 5, (IY+d) FDCB d EE
SET 1,C CBCY SET 3, (IX+d),A”" DDCB d DF SET 5, (IY+d),A™" FDCB d EF
’ SET 3, (IX+d),B"" DDCB d D8 SET 5, (Iv+d) ,B"* FDCB d ES

183

APPEN
DIX A. INSTRUCTIONS SORTED BY M
SET 5, (IY+d),C"" FDCB d e
SET 5, (IY+d),D" E9 SLA C
SET 5, (TY+d) ,E" FDCB d EA SLA D o S
SET 5, (i?d) ,E FDCB d EB SLA E CB22 Sgﬁ EIX+d) ,A™ DDCB d 2F
, (IY+d) ,H™ FDCB d €B23)8
SET . EC SLA o ppeB d 28
5, (Iy+d),L”" FDCB d ED . CB24 SRA (IX+d),C™ DDCB
SET 6,A SLA L SRA (1 . 2 o1
cBET CB25 X+d),D DDCB
SET 6,B CBFO SLA (HL) CB26 SRA (IX+d) ,E™" 3 o
SET 6,C CBF1 SLA (IX+d) DDCB d 26 SRA (TX+d) H” Doch o o
SET 6,D SLA (IX+d),A™ SRA ’ Tocn o
, , (IX+ o
SET 6,E gg?, SLA (IX+d),B™ gggi Z o SRA (IY+3; . ooen o op
SET 6.H SLA (IX+ o 20 oo S o
, CBF4 d),¢ DDCB SRA (IV+d),A™
SET 6,L SLA (IX * a2 : oo S o
, CBF5 +d),D DDCB SRA (IY+d),B”
SET 6, (HL) SLA (I ** ¢ 22 , toch 4 20
CBF6 X+d) ,E DDC SRA (IV+d),C™
SET 6, (IX+d) SLA (- B d 23 C,, FDeBa2d
DDCB d F6 IX+d),H DDC SRA (I¥+d),D "
SET 6, (IX+d), SLA " B d 24 ' FDCB d 2
A™ DDCB d (IX+d), L™ D SRA (1Y+d),E”” 5
SET 6, (IX+d), F7 SLA ’ DCB d 25) Fpes a2
5** DDCB d F (IY+d) D SRA (IY+d),H™ 5
SET 6, (IX+d), 0 SLA *x CB a 26)8 roes d
c** DDCB d (Iy+d),A F SRA (IV+d),L** 2C
SET 6, (IX+d),D"" DDCB d i; SLA (I¥+d),B” FESE j 20 SRL A o .
SET 6, (1X+), - N 20 CB3F
E** DDCB d (IY+d),C F SRL B
SET 6, (I X+d) H™ DDCB d ii SLA (IY+d),D™" Fggi T 5 SRL € B30
SET 6 (1 y+d) FDCB d F6 SLA (IY+d),H™ FDC d 23 SRL E CB3A
:ET 6. (Iv+d) A" FDCB d F7 SLA (IY+d),L"™ FDCE j 54 SR H gggi
ET 6, (IY+d),B™ SLT (L) ° i
FDCB d HL) L
SET 6, (IY+) ,C™* FDCB d icl’ SLI A™* gigG SRL (HL) cE3D
SET 6, (IY+d),D"" FDCB d F2 SLI B CB : SRL (IX+d) DDCE
SET 6, (IY+d) ,E” FDCB d F3 SLL €77 CB§(1) SRL (TX+d), A" DDCE Z o
SET 6, (IY+d), SLI D'” i N s
H* FDCB d D (IX+d),B D
SET 6, (IY+d),L"™ FDC Fe SLI E™ cB32 SRL (IX+d),C™ oeB ¢ %2
SET 7,A B dF5 SLI H™ CB33 SRL (IX+d), - Does o
SET 7,B gﬁig SLI L™ cB3s SRL (IX+d) g Pocn 1 o
, D
:g ; .C CBF9 SLI (IX+d)™" gﬁig d 36 SRL (IX+d),H™ Dggg 3 gi
N SL . SRL o
CBFA I (IX+d),A (IX+d),L
ST 7.0 , DDCB 4 37 , DDCB d 3D
CBFB SLI (IX+d),B™ SRL (1Y+d)
R , DDCB d 30 FDCB d 3E
CBFC SLI (IX+d),C” SRL (T¥+d) A 7
R , DDCB d 31 ’ FDCB d 3F
CBFD SLI (IX+d),D"" SRL (I¥+d),B"
SET 7, (HL) ,0” DDCB d 3 ’ FDCB d 38
CEFE SLI (IX+d),E™ 2 SRL (IY+d),C
SET 7, (IX+d)),E DDCB d 3 = FDCB d 39
o 4 T SIT (IXed) B 3 SRL (IY+d),D”"
SET 7, (IX+d), 0 ppes d , ebc 4 3
o oo a1 ST (1X B 34 SRL (IY+d),E™ A
- F +d),L DEF
SE; ; EI§+d) ,B** DDCB d F8 SLI (Iv+d)™ gggg j " SRL (TY+d) K Fﬁgﬁ : gB
+d),Cc”" DDCB SL > of L ’
q I (Ty+ o L (IY+
T (Te) 2™ Docm 4 ii e §1¥+j§’g** FDCB d 37 SUB A d,L FDCB d 3D
S ’ ;
SET 7,(IX+d) ,E”" DDCB d FB SLI (IY+d),c™ FDCB d 30 SUB B 93
sg 7,(IX+d) ,H™ DDCB d FC SLT (I¥+d).p™" Foes 4 81 SUB € o1
7 (Thedy L , FDCB d 32 SUB
DDCB d FD SLI (IY+d),E™ >
SET 7. (1¥+d)),E FDCB d S 22
FDCB d SLI (I ** " b
SET 7, (IY+d),A™™ FDCB d ig SLI EI&S;H oh 4 ue U 1 ZZ
ST 7 (1vedy B ,L FDCB d 35 SUB L
. FDCB d F8 SRA A %
ET 7, (IY+d),C"* FDCB d F9 SRA B CB2F SUB D6
SET 7, (IY+d),D™™ FDCB d FA SRA C cB28 SUB (HL) 96)
SET 7,(IY+d),E FDCB d FB SRA D €B29 SUB (IX+d) DD96 d
SET 7,(IY+d),H FDCB d FC SRA E g SUB. (IY+d) FD96 d
SET 7, (IY+d) ,L** FDCE SRA H CB2B SUB IXH** DD
SETAEZX o d FD SRA L eB2C SUB IXL o5
SLA A 95 CB2D SUB o pb95
CB27 SRA (HL) I d
4 CB2E suB 1YL** pos
©B20 SRA (IX+d) ; IYL FD95
DCB d 2E SWAPNIBZX EDo3
TEST n%X
n ED27 n

184

APPENDIX A.

INSTRUCTIONS SORTED BY MNEMONIC

XOR A
XOR B
XO0R C
XO0R D
XO0R E

185

AF
A8
A9
AA
AB

XOR H

XOR L

XOR n

XOR (HL)
XO0R (IX+d)

AC

AD

EE n
AE
DDAE d

XOR (IY+d)
XOR IXH™"
XOR IXL™"
XOR IYH™
XOR IYL™

FDAE d
DDAC
DDAD
FDAC
FDAD

APPENDIX A. INSTRUCTIONS SORTED BY MNEMONIC

This page intentionally left empty

186

Appendix B

Instructions Sorted by Opcode

. . k%
Instructions marked with =~ are undocumented.

Instructions marked wit

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23

187

m

NOP

LD BC,nm
LD (BC),A
INC BC
INC B

DEC B

LD B,n
RLCA

EX AF,AF’
ADD HL,BC
LD A, (BC)
DEC BC
INC C

DEC C

LD C,n
RRCA

DJNZ (PC+e)
LD DE,nm
LD (DE),A
INC DE
INC D

DEC D

LD D,n
RLA

JR e

ADD HL,DE
LD A, (DE)
DEC DE
INC E

DEC E

LD E,n
RRA

JR NZ,e
LD HL,nm
LD (nm) ,HL
INC HL

24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47

=]

are ZX Spectrum Next extended.

INC H

DEC H

LD H,n
DAA

JR Z,e
ADD HL,HL
LD HL, (nm)
DEC HL
INC L

DEC L

LD L,n
CPL

JR NC,e
LD SP,nm
LD (nm),A
INC SP
INC (HL)
DEC (HL)
LD (HL),n
SCF

JR C,e
ADD HL,SP
LD A, (nm)
DEC SP
INC A

DEC A

LD A,n
CCF
LD
LD
LD
LD
LD
LD
LD
LD

. .

-

-

= %E CE WU QW
=
A —g

0 wowmwww

-

48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
BA
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

jus]
=
~

ol cvEvEvEvvlvEvEvEvoNeoNeoNeoNoNoNelNe!
QuWrEr ~~CEDMmoDQwWweE AP oDHOQ®

[I < B o
m Mmoo

APPENDIX B. INSTRUCTIONS SORTED BY OPCODE
6C LD L,H A5 AND L CB13 RL E
6D LD L,L A6 AND (HL) CB14 RL H
6E LD L, (HL) AT AND A CB15 RL L
6F LD L,A A8 XOR B CB16 RL (HL)
70 LD (HL),B A9 XOR C CB17 RL A
71 LD (HL),C AA XOR D CB18 RR B
72 LD (HL),D AB XOR E CB19 RR C
73 LD (HL),E AC XOR H CB1A RR D
74 LD (HL),H AD XOR L CB1B RR E
75 LD (HL),L AE XOR (HL) CB1C RR H
76 HALT AF XOR A CB1D RR L
77 LD (HL),A BO OR B CB1E RR (HL)
78 LD A,B B1 OR C CB1F RR A
79 LD A,C B2 OR D CB20 SLA B
7A LD A,D B3 OR E CB21 SLA C
7B LD ALE B4 OR H CB22 SLA D
7C LD A,H B5 OR L CB23 SLA E
7D LD A,L B6 OR (HL) CB24 SLA H
7E LD A, (HL) B7 OR A CB25 SLA L
7F LD A,A B8 CP B CB26 SLA (HL)
80 ADD A,B B9 CP C CB27 SLA A
81 ADD A,C BA CP D CB28 SRA B
82 ADD A,D BB CP E CB29 SRA C
83 ADD A,E BC CP H CB2A SRA D
84 ADD A,H BD CP L CB2B SRA E
85 ADD A,L BE CP (HL) CB2C SRA H
86 ADD A, (HL) BF CP A CB2D SRA L
87 ADD A,A co RET NZ CB2E SRA (HL)
88 ADC A,B c1 POP BC CB2F SRA A
89 ADC A,C C2mn JP NZ,nm CB30 SLI B™
8A ADC A,D C3mn JP nm CB31 SLI ¢
8B ADC AL,E C4mn CALL NZ,nm CB32 SLI D™
8C ADC A,H C5 PUSH BC CB33 ST EY
8D ADC A,L C6 n ADD A,n CB34 SLI B
8E ADC A, (HL) Cc7 RST OH CB35 SLI L™
8F ADC A,A c8 RET Z CB36 SLT (HL)™
90 SUB B c9 RET CB37 SLT A"
91 SUB C CAmn JP Z,nm CB38 SRL B
92 SUB D CBOO RLC B CB39 SRL C
93 SUB E CBO1 RLC C CB3A SRL D
94 SUB H CBO2 RLC D CB3B SRL E
95 SUB L CBO3 RLC E CB3C SRL H
96 SUB (HL) CB04 RLC H CB3D SRL L
97 SUB A CBO5 RLC L CB3E SRL (HL)
98 SBC A,B CBO6 RLC (HL) CB3F SRL A
99 SBC A,C CBO7 RLC A CB40 BIT 0,B
9A SBC A,D CBO8 RRC B CB41 BIT 0.C
9B SBC A,E CBO9 RRC C CB42 BIT 0.D
9C SBC A,H CBOA RRC D CB43 BIT 0.E
9D SBC A,L CBOB RRC E CBA4 BIT O.H
9E SBC A, (HL) CBOC RRC H CBAS BIT O.L
9F SBC A,A CBOD RRC L CBA46 BIT 0, (HL)
A0 AND B CBOE RRC (HL) CBAT BIT 0,A
Al AND C CBOF RRC A CB4S BIT 1.B
A2 AND D CB10 RL B CBA49 BIT 1.C
A3 AND E CB11 RL C CBAA BIT 1.D
A4 AND H CB12 RL D CBAB BIT 1.E

-

188

APPENDIX B. INSTRUCTIONS SORTED BY OPCODE

CB4C BIT 1,H CB85 RES O,L CBBE RES 7, (HL)
CB4D BIT 1,L CBS6 RES 0, (HL) CBBF RES 7,A
CB4E BIT 1, (HL) CB87 RES 0,4 CBCO SET 0,B
CB4F BIT 1,A CB88 RES 1,B CBC1 SET 0,C
CB50 BIT 2,B CB89 RES 1,C CBC2 SET 0,D
CB51 BIT 2,C CBSA RES 1,D CBC3 SET 0,E
CB52 BIT 2,D CBSB RES 1,E CBC4 SET 0,H
CB53 BIT 2,E CBSC RES 1,H CBC5 SET O,L
CB54 BIT 2,H CB8D RES 1,L CBC6 SET 0, (HL)
CB55 BIT 2,L CBSE RES 1, (HL) CBC7 SET 0,A
CB56 BIT 2, (HL) CBSF RES 1,A CBCS SET 1,B
CB57 BIT 2,A CB90 RES 2,B CBC9 SET 1,C
CB58 BIT 3,B CB91 RES 2,C CBCA SET 1,D
CB59 BIT 3,C CB92 RES 2,D CBCB SET 1,E
CB5A BIT 3,D CB93 RES 2,E CBCC SET 1,H
CB5B BIT 3,E CB94 RES 2,H CBCD SET 1,L
CB5C BIT 3,H CB95 RES 2,L CBCE SET 1, (HL)
CB5D BIT 3,L CB96 RES 2, (HL) CBCF SET 1,A
CB5E BIT 3, (HL) CB97 RES 2,A CBDO SET 2,B
CB5F BIT 3,A CB98 RES 3,B CBD1 SET 2,C
CB60 BIT 4,B CB99 RES 3,C CBD2 SET 2,D
CB61 BIT 4,C CB9A RES 3,D CBD3 SET 2,E
CB62 BIT 4,D CB9B RES 3,E CBD4 SET 2,H
CB63 BIT 4,E CB9C RES 3,H CBD5 SET 2,L
CB64 BIT 4,H CB9D RES 3,L CBD6 SET 2, (HL)
CB65 BIT 4,L CBYE RES 3, (HL) CBD7 SET 2,A
CB66 BIT 4, (HL) CBOF RES 3,A CBDS SET 3,B
CB67 BIT 4,A CBAO RES 4,B CBD9 SET 3,C
CB68 BIT 5,B CBA1 RES 4,C CBDA SET 3,D
CB69 BIT 5,C CBA2 RES 4,D CBDB SET 3,E
CB6A BIT 5,D CBA3 RES 4,E CBDC SET 3,H
CB6B BIT 5,E CBA4 RES 4,H CBDD SET 3,L
CB6C BIT 5,H CBA5 RES 4,L CBDE SET 3, (HL)
CB6D BIT 5,L CBA6 RES 4, (HL) CBDF SET 3,A
CB6E BIT 5, (HL) CBAT7 RES 4,A CBEO SET 4,B
CB6F BIT 5,A CBAS RES 5,B CBE1 SET 4,C
CB70 BIT 6,B CBA9 RES 5,C CBE2 SET 4,D
CB71 BIT 6,C CBAA RES 5,D CBE3 SET 4,E
CB72 BIT 6,D CBAB RES 5,E CBE4 SET 4,H
CB73 BIT 6,E CBAC RES 5,H CBE5 SET

CB74 BIT 6,H CBAD RES 5,L CBE6 SET

CB75 BIT 6,L CBAE RES 5, (HL) CBE7 SET 4,A
CB76 BIT 6, (HL) CBAF RES 5,A CBES SET 5,B
CB77 BIT 6,A CBBO RES 6,B CBE9 SET 5,C
CB78 BIT 7,B CBB1 RES 6,C CBEA SET 5,D
CB79 BIT 7,C CBB2 RES 6,D CBEB SET 5,E
CB7A BIT 7,D CBB3 RES 6,E CBEC SET 5,H
CB7B BIT 7,E CBB4 RES 6,H CBED SET 5,L
CB7C BIT 7,H CBB5 RES 6,L CBEE SET 5, (
CB7D BIT 7,L CBB6 RES 6, (HL) CBEF SET 5,A
CB7E BIT 7, (HL) CBB7 RES 6,4 CBFO SET 6,B
CBTF BIT 7,A CBBS RES 7,B CBF1 SET 6,C
CB80 RES 0,B CBB9 RES 7,C CBF2 SET 6,D
CB81 RES 0,C CBBA RES 7,D CBF3 SET 6,E
CB82 RES 0,D CBBB RES 7,E CBF4 SET 6,H
CB83 RES O,E CBBC RES 7,H CBF5 SET 6,L
CB84 RES 0,H CBBD RES 7,L CBF6 SET 6, (HL)

189

-

-

APPENDIX B. INSTRUCTIONS SORTED BY OPCODE
CBF7 SET 6,A DD60 LD IXH,B"" DDCB d 05 RLC (IX+d),L™
CBF8 SET 7,B DD61 LD IXH,C™" DDCB d 06 RLC (IX+d)
CBF9 SET 7,C DD62 LD IXH,D"" DDCB d 07 RLC (IX+d),A™
CBFA SET 7,D DD63 LD IXH,E DDCB d 08 RRC (IX+d),B"
CBFB SET 7,E DD64 LD IXH,IXH DDCB d 09 RRC (IX+d),C
CBFC SET 7,H DD65 LD IXH,IXL"" DDCB d OA RRC (IX+d),D™
CBFD SET 7,L DD66 d LD H, (IX+d) DDCB d OB RRC (IX+d),E™
CBFE SET 7, (HL) DD67 LD IXH,A™ DDCB d OC RRC (IX+d),H™
CBFF SET 7,A DD68 LD IXL,B™ DDCB d OD RRC (IX+d),L"
CCmn CALL Z,nm DD69 LD IXL,C™ DDCB d OE RRC (IX+d)
CDmn CALL nm DD6A LD IXL,D™ DDCB d OF RRC (IX+d),A™
CE n ADC A,n DD6B LD IXL,E™ DDCB d 10 RL (IX+d),B™
gg §§$ 35 DD6C LD IXL,IXH"" DDCB d 11 RL (IX+d),c™
D1 POP DE DD6D LD IXL,IXL"" DDCB d 12 RL (IX+d),D™
DD6E d LD L, (IX+d) DDCB d 13 RL (IX+d),E"
P2 m n JP NC,nn DD6F LD IXL,A™ DDCB d 14 RL (IX+d),H™
gz ; N 2XEL(§é’ﬁm DD70 d LD (IX+d),B DDCB d 15 RL (IX+d),L™
D5 SUSH DE. DD71 d LD (IX+d),C DDCB d 16 RL (IX+d)
6 n SUB n DD72 d LD (IX+d),D DDCB d 17 RL (IX+d),A™
D7 RST 10H DD73 d LD (IX+d),E DDCB d 18 RR (IX+d),B™
D8 RET O DD74 d LD (IX+d),H DDCB d 19 RR (IX+d),C™"
D9 EXX DD75 d LD (IX+d),L DDCB d 1A RR (IX+d),D”
DA m n P C.om DD77 d LD (IX+d),A DDCB d 1B RR (IX+d),E™
DB 1 IN A, (n) DD7C LD A,IXH DDCB d 1C RR (IX+d),H”
DD7D LD A,IXL o
DC mn CALL C,nm s DDCB d 1D RR (IX+d),L
DDO9 ADD IX,BC DD7E d LD A, (IX"'fg DDCB d 1E RR (IX+d)
DD19 ADD IX,DE DD84 ADD A’IXH** DDCB d 1F RR (IX+d),A™"
DD21 m LD IX,nm DD85 ADD A, IXL DDCB d 20 SLA (IX+d),B™
DD22 m LD (am),IX DDE6 d ADD A, (IX+d) DDCB d 21 SLA (IX+d),C”
DD23 INC IX DD8C ADC A,IXH DDCB d 22 SLA (IX+d),D""
DD24 INC IXH™ DD8D ADC A,IXL DDCB d 23 SLA (IX+d),E™
DD25 DEC IXH™ DDSE d ADC A, (TX+d) DDCB d 24 SLA (IX+d),H™
DD26 n LD IXH,n"" DD34 SUB IXH | DDCB d 25 SLA (IX+d),L""
DD95 SUB IXL
DD29 ADD IX,IX DDCB d 26 SLA (IX+d)
DD2A m LD IX, (am) DD96 d SUB (IX+d) DDCB d 27 SLA (IX+d),A™
DD2B DEC IX DDSC SBC A,IXH DDCB d 28 SRA (IX+d),B™
DD2C INC IXL™ DDSD SBC A, IXL DDCB d 29 SRA (IX+d),C™
DD2D DEC IXL" DDIE d SEC A, (IX+d) DDCB d 24 SRA (IX+d),D”
DD2E n LD IXL,n"" DDA4 AND IXH DDCB d 2B SRA (IX+d),E”
DD34 d INC (IX+d) DDA5 AND IXL DDCB d 2C SRA (IX+d),H”
DD35 d DEC (IX+d) DDA6 d AND - (IX+d) DDCB d 2D SRA (IX+d),L”
DD36 d LD (IX+d),n DDAC XOR IXH DDCB d 2E SRA (IX+d)
DD39 ADD TX,SP DDAD XOR IXL DDCB d 2F SRA (IX+d),A™
DD44 LD B,IXH DDAE d XOR (IX+d) DDCB d 30 SLI (IX+d),B™
DD45 LD B,IXL DDB4 OR IXH DDCB d 31 SLI (IX+d),C™
DD46 d LD B, (IX+d) ggg: . gR §¥;+d) DDCB d 32 SLI (IX+d),D™
DD4C LD C,IXH R (IX+4c DDCB d 33 SLI (IX+d),E™
e DDBC CP IXH -
DD4D LD C,IXL DDED P DDCB d 34 SLI (IX+d),.H
DD4E d LD C, (IX+d) DOBE d b (e DDCB d 35 SLI (IX+d),L™
DDs4 LD D, IXH | DDCB 4 00 RLC (IXed) B DDCB d 36 SLI (IX+d)™
o oo DDCB d 01 RLC (IX+d)’C** DDCB d 37 SLI (IX+d),A™
po5e d o D’(IXLS) DDCB d 02 RLC (IX+d),D** DDCB d 38 SRL (IX+d),B’"
DD5C LD E,IXH | DDCE d 03 RLC (IXed) E™ DDCB d 39 SRL (IX+d),C™
DD5D LD E,IXL DDCE d 04 RLC (IXed) H™ DDCB d 34 SRL (IX+d),D™
DDSE d LD E, (IX+d) g DDCB d 3B SRL (IX+d),E™

190

APPENDIX B. INSTRUCTIONS SORTED BY OPCODE

DDCB d 3C SRL (IX+d),H™ DDCB d 73 BIT 6, (IX+d)"" DDCB d AA RES 5, (IX+d),D"”
DDCB d 3D SRL (IX+d),L"" DDCB d 74 BIT 6, (IX+d)"" DDCB d AB RES 5, (IX+d),E™
DDCB d 3E SRL (IX+d) DDCB d 75 BIT 6, (IX+d)"™" DDCB d AC RES 5, (IX+d),H"
DDCB d 3F SRL (IX+d),A™" DDCB d 76 BIT 6, (IX+d) DDCB d AD RES 5, (IX+d),L"™
DDCB d 40 BIT 0, (IX+d)™ DDCB d 77 BIT 6, (IX+d)™ DDCB d AE RES 5, (IX+d)
DDCB d 41 BIT 0, (IX+d)™ DDCB d 78 BIT 7, (IX+d)"" DDCB d AF RES 5, (IX+d),A"™
DDCB d 42 BIT 0, (IX+d)™™ DDCB d 79 BIT 7, (IX+d)™ DDCB d BO RES 6, (IX+d),B""
DDCB d 43 BIT 0, (IX+d)™" DDCB d 7A BIT 7, (IX+d)™" DDCB d B1 RES 6, (IX+d),c"
DDCB d 44 BIT 0, (IX+d)™" DDCB d 7B BIT 7, (IX+d)"™" DDCB d B2 RES 6, (IX+d),D""
DDCB d 45 BIT 0, (IX+d)™ DDCB d 7C BIT 7, (IX+d)™ DDCB d B3 RES 6, (IX+d),E"
DDCB d 46 BIT 0, (IX+d) DDCB d 7D BIT 7, (IX+d)™" DDCB d B4 RES 6, (IX+d),H"
DDCB d 47 BIT 0, (IX+d)™™ DDCB d 7E BIT 7, (IX+d) DDCB d B5 RES 6, (IX+d),L*
DDCB d 48 BIT 1,(IX+d)"™" DDCB d 7F BIT 7,(IX+d)™" DDCB d B6 RES 6, (IX+d)
DDCB d 49 BIT 1,(IX+d)™" DDCB d 80 RES 0, (IX+d),B"" DDCB d B7 RES 6, (IX+d),A™
DDCB d 4A BIT 1,(IX+d)™ DDCB d 81 RES 0, (IX+d),C™" DDCB d B8 RES 7, (IX+d),B""
DDCB d 4B BIT 1, (IX+d)™ DDCB d 82 RES 0, (IX+d),D™ DDCB d B9 RES 7, (IX+d),C™
DDCB d 4C BIT 1, (IX+d)™™ DDCB d 83 RES 0, (IX+d),E™ DDCB d BA RES 7, (IX+d),D""
DDCB d 4D BIT 1, (IX+d)™™ DDCB d 84 RES 0, (IX+d),H™" DDCB d BB RES 7, (IX+d),E™
DDCB d 4E BIT 1, (IX+d) DDCB d 85 RES 0, (IX+d),L™" DDCB d BC RES 7, (IX+d),H"
DDCB d 4F BIT 1, (IX+d)™" DDCB d 86 RES 0, (IX+d) DDCB d BD RES 7, (IX+d),L”
DDCB d 50 BIT 2, (IX+d)™ DDCB d 87 RES 0, (IX+d),A™ DDCB d BE RES 7, (IX+d)
DDCB d 51 BIT 2, (IX+d)™ DDCB d 88 RES 1,(IX+d),B"" DDCB d BF RES 7, (IX+d),A™
DDCB d 52 BIT 2, (IX+d)™™ DDCB d 89 RES 1, (IX+d),c™ DDCB d CO SET 0, (IX+d),B""
DDCB d 53 BIT 2, (IX+d)™" DDCB d 8A RES 1,(IX+d),D"" DDCB d C1 SET 0, (IX+d),c"
DDCB d 54 BIT 2, (IX+d)™ DDCB d 8B RES 1,(IX+d),E™" DDCB d C2 SET 0, (IX+d),D""
DDCB d 55 BIT 2, (IX+d)™ DDCB d 8C RES 1,(IX+d),H™ DDCB d C3 SET 0, (IX+d),E™
DDCB d 56 BIT 2, (IX+d) DDCB d 8D RES 1,(IX+d),L"" DDCB d C4 SET 0, (IX+d),H""
DDCB d 57 BIT 2, (IX+d)™™ DDCB d 8E RES 1, (IX+d) DDCB d C5 SET 0, (IX+d),L*
DDCB d 58 BIT 3, (IX+d)™" DDCB d 8F RES 1, (IX+d),A™ DDCB d C6 SET 0, (IX+d)
DDCB d 59 BIT 3, (IX+d)™ DDCB d 90 RES 2, (IX+d),B"" DDCB d C7 SET 0, (IX+d),A™
DDCB d 54 BIT 3, (IX+d)™ DDCB d 91 RES 2, (IX+d),C™" DDCB d C8 SET 1,(IX+d),B""
DDCB d 5B BIT 3, (IX+d)™ DDCB d 92 RES 2, (IX+d),D™ DDCB d C9 SET 1,(IX+d),c*
DDCB d 5C BIT 3, (IX+d)™™ DDCB d 93 RES 2, (IX+d),E™ DDCB d CA SET 1,(IX+d),D""
DDCB d 5D BIT 3, (IX+d)™" DDCB d 94 RES 2, (IX+d),H"” DDCB d CB SET 1,(IX+d),E™
DDCB d 5E BIT 3, (IX+d) DDCB d 95 RES 2, (IX+d),L™" DDCB d CC SET 1,(IX+d),H"
DDCB d 5F BIT 3, (IX+d)™ DDCB d 96 RES 2, (IX+d) DDCB d CD SET 1, (IX+d),L*
DDCB d 60 BIT 4, (IX+d)™™ DDCB d 97 RES 2, (IX+d),A™ DDCB d CE SET 1, (IX+d)
DDCB d 61 BIT 4, (IX+d)™™ DDCB d 98 RES 3, (IX+d),B™ DDCB d CF SET 1,(IX+d),A™
DDCB d 62 BIT 4, (IX+d)™" DDCB d 99 RES 3, (IX+d),C"" DDCB d DO SET 2, (IX+d),B""
DDCB d 63 BIT 4, (IX+d)™" DDCB d 94 RES 3, (IX+d),D"" DDCB d D1 SET 2, (IX+d),c"
DDCB d 64 BIT 4, (IX+d)™ DDCB d 9B RES 3, (IX+d),E™ DDCB d D2 SET 2, (IX+d),D""
DDCB d 65 BIT 4, (IX+d)™™ DDCB d 9C RES 3, (IX+d),H™ DDCB d D3 SET 2, (IX+d),E™
DDCB d 66 BIT 4, (IX+d) DDCB d 9D RES 3, (IX+d),L*" DDCB d D4 SET 2, (IX+d),H™
DDCB d 67 BIT 4, (IX+d)™ DDCB d 9E RES 3, (IX+d) DDCB d D5 SET 2, (IX+d),L™
DDCB d 68 BIT 5, (IX+d)™" DDCB d OF RES 3, (IX+d),A™ DDCB d D6 SET 2, (IX+d)
DDCB d 69 BIT 5, (IX+d)™ DDCB d A0 RES 4, (IX+d),B™" DDCB d D7 SET 2, (IX+d),A™
DDCB d 6A BIT 5, (IX+d)™ DDCB d A1 RES 4, (IX+d),C™" DDCB d D8 SET 3, (IX+d),B"”
DDCB d 6B BIT 5, (IX+d)™™ DDCB d A2 RES 4, (IX+d),D"" DDCB d D9 SET 3, (IX+d),c"
DDCB d 6C BIT 5, (IX+d)™" DDCB d A3 RES 4, (IX+d),E™ DDCB d DA SET 3, (IX+d),D""
DDCB d 6D BIT 5, (IX+d)™" DDCB d A4 RES 4, (IX+d),H™ DDCB d DB SET 3, (IX+d),E"
DDCB d 6E BIT 5, (IX+d) DDCB d A5 RES 4, (IX+d),L"" DDCB d DC SET 3,(IX+d),H""
DDCB d 6F BIT 5, (IX+d)"" DDCB d A6 RES 4, (IX+d) DDCB d DD SET 3, (IX+d),L™"
DDCB d 70 BIT 6, (IX+d)™™ DDCB d A7 RES 4, (IX+d),A™ DDCB d DE SET 3, (IX+d)
DDCB d 71 BIT 6, (IX+d)™" DDCB d A8 RES 5, (IX+d),B"" DDCB d DF SET 3, (IX+d),A™
DDCB d 72 BIT 6, (IX+d)™" DDCB d A9 RES 5, (IX+d),C™" DDCB d EO SET 4, (IX+d),B""

191

APPENDIX B. INSTRUCTIONS SORTED BY OPCODE

DDCB d E1 SET 4, (IX+d),c™ ED29 BSRA DE,B%X ED6D RETN™™
DDCB d E2 SET 4, (IX+d),D"" ED2A BSRL DE,BZX ED6E M 0™
DDCB d E3 SET 4, (IX+d),E™ ED2B BSRF DE,BZ%X ED6F RLD
DDCB d E4 SET 4, (IX+d),H™ ED2C BRLC DE,B%X ED70 IN F, ()"
DDCB d E5 SET 4, (IX+d),L™ ED30 MUL D,E%X ED70 N (¢)™
DDCB d E6 SET 4, (IX+d) ED31 ADD HL’AEE ED71 ouT (C),0™
DDCB d E7 SET 4, (IX+d),A™ ED32 ADD DE,AZX ED72 SBC HL,SP
DDCB d E8 SET 5, (IX+d),B™ ED33 ADD BC,A o~ ED73 m n LD (nm),SP

ok ED34 m n ADD HL,nm ok
DR 4 BA SET o (Ixegy 0" EDS5ma ADD DE,u’ ens

’ T ED36 m n ADD BC,nm%X *ox

DDCB d EB SET 5, (IX+d),E) ED76 M 1
DDCB d EC SET 5, (IX+d),H™ ggig INTB’(C)B ED78 IN A, (C)
DDCB d ED SET 5, (IX+d),L™ e ggc éi)éc ED79 OUT (C),A
DDCB d EE SET 5, (IX+d) D43 D (5 BC ED7A ADC HL,SP
DDCB d EF SET 5, (IX+d),A™" EDa4 o NEG nmo, ED7B m n LD §f,(nm)
DDCB d FO SET 6, (IX+d),B™ ED7C NEG

*k ED45 RETN ED7D RETN**
DDCB d F1 SET 6, (IX+d),C

wx ED46 IM O ED7E M 2™
DDCB d F2 SET 6, (IX+d),D

ok ED47 LD I,A EDSA PUSH 7X
DDCB d F3 SET 6, (IX+d),E nm nm

- ED48 IN ¢, (C) ED90 OUTINBZX
DDCB d F4 SET 6, (IX+d),H

- ED49 ouT (©),C ED91 NEXTREG r,n%X
DDCB d F5 SET 6, (IX+d),L ron r,n

ED2A ADC HL,BC ED92 NEXTREG r,A%X

DDCB d F6 SET 6, (IX+d) n L

" ED4B m n LD BC, (nm) FD93 PIXELDNZX
DDCB d F7 SET 6, (IX+d),A ok

- ED4C NEG ED94 PIXELADZX
DDCB d F8 SET 7, (IX+d),B

- ED4D RETI ED95 SETAE?X
DDCB d F9 SET 7, (IX+d),C ok

- ED4E Mo ED97 JP (C)ZX
DDCB d FA SET 7,(IX+d),D

. ED4F LD R,A EDAO LDI
DDCB d FB SET 7, (IX+d),E ED50 IN D, (C) EDA1 CPI
DDCB d FC SET 7,(IX+d),H"" ED51 OUT (C),D EDAD INT
DDCB d FD SET 7, (IX+d),L ED52 SBC HL,DE EDA3 OUTI
DDCB d FE SET 7, (IX+d) ED53 m n LD (nm),DE ZX

" wnm), EDA4 LDIX
DDCB d FF SET 7, (IX+d),A ED54 NEG . EDAS LDWSZX
DDE1 POP IX ED55 RETN EDAC LDDXZX
DDE3 EX (SP),IX ED56 M 1 EDAS LDD
DDES PUSH IX ED57 LD A,I EDA9 CPD
DDE9 JP (IX) ED58 IN E, (C) EDAA IND
DDF9 LD SP,IX ED59 ouT (C),E EDAB QUTD
DE n SBC A,n ED5A ADC HL,DE EDBO LDIR
DF RST 18H EDSB m n LD Ef.'., (nm) EDB1 CPIR
EO RET PO ED5C NEG™" EDB2 INIR
E1 POP HL ED5D RETN EDB3 OTIR
E2 mn JP PO,nm EDSE IM 2 EDB4 LDIRXZX
E3 EX (SP),HL ED5F LD A,R EDB7 LDPTRXZX
ES PUSH HL ED61 OUT (C),H EDB8 LDDR
E6 n AND n ED62 SBC HL,HL EDB9 CPDR
E7 RST 20H ED63 m n LD (nm),HL EDBA INDR
E8 RET PE ED64 NEG"™ EDBB OTDR
E9 JP (HL) ED65 RETN™ EE n XOR n
EAmn JP PE,nm ED66 M o™ EF RST 28H
EB EX DE,HL ED67 RRD FO RET P
ECmn CALL PEéim ED68 IN L, (C) F1 POP AF
ED23 SWAPNIB o~ ED69 QUT (C),L F2 m n JP P,nm
ED24 MIRRURZQ ED6A ADC HL,HL F3 DI
ED27 n TEST n o ED6B m n LD HL, (nm) F4 mn CALL P,nm
ED28 BSLA DE,B ED6C NEG™ F5 PUSH AF
ED28 BSLA DE,B

192

APPENDIX B. INSTRUCTIONS SORTED BY OPCODE
F6 n OR n FD73 d LD (IY+d),E FDCB d 18 RR (IY+d),B™"
F7 RST 30H FD74 d LD (IY+d),H FDCB d 19 RR (IY+d),C™"
F8 RET M FD75 d LD (IY+d),L FDCB d 1A RR (IY+d),D”
F9 LD SP,HL FD77 d LD (IY+d),A FDCB d 1B RR (IY+d),E™
FAmn JP M,nm FD7C LD A,IYH™ FDCB d 1C RR (IY+d),H"
FB EI FD7D LD A,IYL™ FDCB d 1D RR (IY+d),L™
FC m n CALL M,nm FD7E d LD A, (IY+d) FDCB d 1E RR (IY+d)
FDO9 ADD IY,BC FD84 ADD A,IYHii FDCB d 1F RR (IY+d),A™
FD19 ADD IY,DE FD85 ADD A,IYL FDCB d 20 SLA (IY+d),B™
FD21 m LD IY,nm FD86 d ADD A,(IY:S) FDCB 4 21 SLA (IY+d),c™
FD22 m LD (om),TY FD8C ADC A, IVH" FDCB d 22 SLA (IY+d),D™
FD23 INC IY FD8D ADC A,IYL FDCB d 23 SLA (IV+d),E™
FD24 INC IVH | FDSE d ADC A, (TY+d) FDCB d 24 SLA (IY+d),H™
FD25 DEC IVH FD94 SUB IYH FDCB d 25 SLA (IY+d),L™
iggg n I&gnlg’rﬁ FD95 SUB IYL FDCB d 26 SLA (IV+d)
oo b Iy Z , FD96 d SUB (IY+d2* FDCB d 27 SLA (IY+d),A™
o m DEC 1y nm FDOC SBC A,IVH FDCB d 28 SRA (IY+d),B™
FDaC e TyL™ FDOD SBC A,IYL FDCB d 29 SRA (IY+d),c™
FDD DEC TYL* FDOE d SBC A, (IY+d) FDCB d 24 SRA (IY+d),D”
FDoE ——— FDA4 AND IVH FDCB d 2B SRA (IV+d),E
roaa 3 e (I;fd) FDA5 AND IYL FDCB d 2C SRA (IY+d),H™
D5 4 DEC (IV+d) FDAG d AND (IY+d) FDCB d 2D SRA (IV+d),L”
FDAC XOR IYH FDCB d 2E SRA (IY+d)
FDCB d 2F SRA (IV+d),A
FD39 ADD 1Y,SP FDAE d XOR (IY+d) -
" FDCB d 30 SLI (IV+d),B
FD44 LD B,IYH FDBA OR IVE™ "
- FDCB d 31 SLI (IV+d),C
FD45 LD B,IYL i OR 1VL™ "
FDCB d 32 SLI (IY+d),D
FD46 d LD B, (IY+d) FDB6 d OR (IY+d) ok
o FDCB d 33 SLI (IV+d),E
FDA4C LD C,IYH FDBC - "
- FDCB d 34 SLI (IV+d),H
FD4D LD C,IYL FDED cp IyL™ "
FDCB d 35 SLI (IV+d),L
FD4E d LD C, (IY+d) FDBE d CP (IV+d) o
FD54 ID D,IYH™ . FDCB d 36 SLI (IY+d)
- FDCB d 00 RLC (IV+d),B FDCB d 37 SLI (IY+d),A™
FD55 LD D,IYL o ,
FDCB d 01 RLC (IY+d),C FDCB d 38 SRL (IV+d) B™
FD56 d LD D, (IY+d) FDCB d 02 RLC (IY+d),D™* P
FD5C b E. IYE™ D FDCB d 39 SRL (IV+d),C
- FDCB d 03 RLC (IY+d),E FDCB d 3A SRL (IY+d),D™
FD5D LD E,IYL wox)
FDCB d 04 RLC (IY+d),H -
+ . FDCB d 3B SRL (IV+d),E
FDSE d LD E, (I1Y+d) FDCB d 05 RLC (IY+d),L -
’ FDCB d 06 RLC (IY+d) *ox
FD61 LD IVH.C™ » FDCB d 3D SRL (IV+d),L
. FDCB d 07 RLC (IY+d),A FDCB d 3E SRL (IV+d)
FD62 LD IVH,D o
- FDCB d 08 RRC (IY+d),B FDCB d 3F SRL (IY+d),A™
FD63 LD IVH,E wox)
- FDCB d 09 RRC (IY+d),C FDCB d 40 BIT 0, (Iv+d)™
FD64 LD IYH,IYH . ,
- FDCB d 0OA RRC (IY+d),D FDCB d 41 BIT 0, (IY+d)™
FD65 LD IVH,IYL o ;
FDCB d OB RRC (IY+d),E FDCB d 42 BIT 0. (I¥+d)™
FD66 d LD H, (IY+d) . ,
e FDCB d OC RRC (IY+d),H FDCB d 43 BIT 0. (IV+d)™
FD67 LD IVH,A . ,
» FDCB d OD RRC (IY+d),L -
FDGS LD IYL.B FDCB d 44 BIT 0, (IY+d)
g FDCB d OE RRC (IY+d) FDCB d 45 BIT 0, (IY+d)™
FD69 LD IYL,C o ,
. FDCB d OF RRC (IY+d),A
: FDCB d 46 BIT 0, (IY+d)
FDoA WD FDCB d 10 RL (IY+d),B FDCB d 47 BIT 0, (IY+d)™
FD6B LD IYL,E o ,
- FDCB d 11 RL (IY+d),C FDCB d 48 BIT 1, (IY+d)™
FD6C LD IYL,IYH - ,
- FDCB d 12 RL (IY+d),D FDCB d 49 BIT 1, (IY+d)™
FD6D LD IVL,IYL - ,
FDCB d 13 RL (IY+d),E -
+ » FDCB d 4A BIT 1, (IY+d)
FD6E d LD L, (IY+d) FDCB d 14 RL (IY+d),H -
- A FDCB d 4B BIT 1, (IY+d)
FD6F LD IYL.A FDCB d 15 RL (IY+d),L -
FD70 d LD (IY+d),B , FDCB d 4C BIT 1, (IY+d)
’ FDCB d 16 RL (IY+d) -
FD71 d LD (IV+d),C o FDCB d 4D BIT 1, (IY+d)
’ FDCB d 17 RL (IY+d),A
FD72 4 LD (IY+d),D ’ FDCB d 4E BIT 1, (IY+d)

193

APPENDIX B. INSTRUCTIONS SORTED BY OPCODE
FDCB d 4F BIT 1, (IY+d)™" FDCB d 86 RES 0, (IY+d) FDCB d BD RES 7, (IY+d),L™
FDCB d 50 BIT 2, (IY+d)™" FDCB d 87 RES 0, (IY+d),A™ FDCB d BE RES 7, (IY+d)
FDCB d 51 BIT 2, (IY+d)™™ FDCB d 88 RES 1,(IY+d),B™ FDCB d BF RES 7, (IY+d),A™
FDCB d 52 BIT 2,(IY+d)™" FDCB d 89 RES 1,(IY+d),C™ FDCB d CO SET 0, (IY+d),B""
FDCB d 53 BIT 2, (IY+d)™ FDCB d 8A RES 1,(IY+d),D"" FDCB d C1 SET 0, (IY+d),C"
FDCB d 54 BIT 2, (IY+d)™ FDCB d 8B RES 1,(IY+d),E™ FDCB d C2 SET 0, (IY+d),D"
FDCB d 55 BIT 2, (IY+d)™" FDCB d 8C RES 1,(IY+d),H™ FDCB d C3 SET 0, (IY+d),E™
FDCB d 56 BIT 2, (IY+d) FDCB d 8D RES 1,(IY+d),L™ FDCB d C4 SET 0, (IY+d),H"
FDCB d 57 BIT 2, (IY+d)™" FDCB d 8E RES 1, (IY+d) FDCB d C5 SET 0, (IY+d),L™
FDCB d 58 BIT 3, (IY+d)™ FDCB d 8F RES 1,(IY+d),A™ FDCB d C6 SET 0, (IY+d)
FDCB d 59 BIT 3, (IY+d)™ FDCB d 90 RES 2, (IY+d),B™ FDCB d C7 SET 0, (IY+d),A™
FDCB d 5A BIT 3, (IY+d)™" FDCB d 91 RES 2, (IY+d),C" FDCB d C8 SET 1, (IY+d),B™
FDCB d 5B BIT 3, (IY+d)™™ FDCB d 92 RES 2,(IY+d),D™ FDCB d C9 SET 1,(IY+d),c"”
FDCB d 5C BIT 3, (IY+d)™" FDCB d 93 RES 2, (IY+d),E™ FDCB d CA SET 1,(IY+d),D”"
FDCB d 5D BIT 3, (IY+d)™ FDCB d 94 RES 2,(IY+d),H"™ FDCB d CB SET 1, (IY+d),E™"
FDCB d 5E BIT 3, (IY+d) FDCB d 95 RES 2, (IY+d),L" FDCB d CC SET 1, (IY+d),H"
FDCB d 5F BIT 3, (IY+d)™" FDCB d 96 RES 2, (IY+d) FDCB d CD SET 1,(IY+d),L™
FDCB d 60 BIT 4, (IY+d)™" FDCB d 97 RES 2, (IY+d),A™ FDCB d CE SET 1,(IY+d)
FDCB d 61 BIT 4, (IY+d)™" FDCB d 98 RES 3, (IY+d),B™ FDCB d CF SET 1,(IY+d),A™
FDCB d 62 BIT 4, (IY+d)™ FDCB d 99 RES 3, (IY+d),C™ FDCB d DO SET 2, (IY+d),B""
FDCB d 63 BIT 4, (IY+d)™ FDCB d 94 RES 3, (IY+d),D" FDCB d D1 SET 2,(IY+d),Cc”
FDCB d 64 BIT 4, (IY+d)™" FDCB d 9B RES 3, (IY+d),E™ FDCB d D2 SET 2,(IY+d),D”
FDCB d 65 BIT 4, (IY+d)™™ FDCB d 9C RES 3, (IY+d),H™ FDCB d D3 SET 2,(IY+d),E™
FDCB d 66 BIT 4, (IY+d) FDCB d 9D RES 3, (IY+d),L™ FDCB d D4 SET 2, (IY+d),H”
FDCB d 67 BIT 4, (IY+d)™ FDCB d 9E RES 3, (IY+d) FDCB d D5 SET 2, (IY+d),L""
FDCB d 68 BIT 5, (IY+d)™ FDCB d 9F RES 3, (IY+d),A™ FDCB d D6 SET 2, (IY+d)
FDCB d 69 BIT 5, (IY+d)™™ FDCB d A0 RES 4, (IY+d),B™ FDCB d D7 SET 2,(IY+d),A™
FDCB d 6A BIT 5, (IY+d)™™ FDCB d A1 RES 4, (IY+d),C™ FDCB d D8 SET 3, (IY+d),B™
FDCB d 6B BIT 5, (IY+d)™" FDCB d A2 RES 4, (IY+d),D™ FDCB d D9 SET 3,(IY+d),c"”
FDCB d 6C BIT 5, (IY+d)™ FDCB d A3 RES 4, (IY+d),E™ FDCB d DA SET 3,(IY+d),D""
FDCB d 6D BIT 5, (IY+d)™ FDCB d A4 RES 4, (IY+d),H" FDCB d DB SET 3, (IY+d),E™
FDCB d 6E BIT 5, (IY+d) FDCB d A5 RES 4, (IY+d),L" FDCB d DC SET 3, (IY+d),H"
FDCB d 6F BIT 5, (IY+d)™ FDCB d A6 RES 4, (IY+d) FDCB d DD SET 3, (IY+d),L™
FDCB d 70 BIT 6, (IY+d)™" FDCB d A7 RES 4, (IY+d),A™ FDCB d DE SET 3, (IY+d)
FDCB d 71 BIT 6, (IY+d)"" FDCB d A8 RES 5, (IY+d),B™ FDCB d DF SET 3,(IY+d),A""
FDCB d 72 BIT 6, (IY+d)™™ FDCB d A9 RES 5, (IY+d),C" FDCB d E0O SET 4,(IY+d),B"
FDCB d 73 BIT 6, (IY+d)™ FDCB d AA RES 5, (IY+d),D" FDCB d E1 SET 4, (IY+d),c”
FDCB d 74 BIT 6, (IY+d)™™ FDCB d AB RES 5, (IY+d),E™ FDCB d E2 SET 4, (IY+d),D"
FDCB d 75 BIT 6, (IY+d)™" FDCB d AC RES 5, (IY+d),H™ FDCB d E3 SET 4, (IY+d),E™
FDCB d 76 BIT 6, (IY+d) FDCB d AD RES 5, (IY+d),L™ FDCB d E4 SET 4, (IY+d),H”
FDCB d 77 BIT 6, (IY+d)™ FDCB d AE RES 5, (IY+d) FDCB d E5 SET 4,(IY+d),L”
FDCB d 78 BIT 7, (IY+d)™" FDCB d AF RES 5, (IY+d),A™ FDCB d E6 SET 4, (IY+d)
FDCB d 79 BIT 7, (IY+d)™" FDCB d BO RES 6, (IY+d),B" FDCB d E7 SET 4, (IY+d),A™
FDCB d 7A BIT 7,(IY+d)™™ FDCB d B1 RES 6, (IY+d),C™ FDCB d E8 SET 5, (IY+d),B"™
FDCB d 7B BIT 7,(IY+d)™" FDCB d B2 RES 6, (IY+d),D" FDCB d E9 SET 5, (IY+d),C"
FDCB d 7C BIT 7, (IY+d)™ FDCB d B3 RES 6, (IY+d),E™ FDCB d EA SET 5,(IY+d),D”"
FDCB d 7D BIT 7, (IY+d)™" FDCB d B4 RES 6, (IY+d),H" FDCB d EB SET 5, (IY+d),E™
FDCB d 7E BIT 7, (IY+d) FDCB d B5 RES 6, (IY+d),L™ FDCB d EC SET 5, (IY+d) ,H™
FDCB d 7F BIT 7, (IY+d)™" FDCB d B6 RES 6, (IY+d) FDCB d ED SET 5, (IY+d),L"™
FDCB d 80 RES 0, (IY+d),B™ FDCB d B7 RES 6, (IY+d),A™ FDCB d EE SET 5, (IY+d)
FDCB d 81 RES 0, (IY+d),C™ FDCB d B8 RES 7, (IY+d),B" FDCB d EF SET 5, (IY+d),A™
FDCB d 82 RES 0, (IY+d),D" FDCB d B9 RES 7, (IY+d),C" FDCB d FO SET 6, (IY+d),B"
FDCB d 83 RES 0, (IY+d),E™ FDCB d BA RES 7,(IY+d),D™ FDCB d F1 SET 6, (IY+d),c"”
FDCB d 84 RES 0, (IY+d),H™ FDCB d BB RES 7, (IY+d),E™ FDCB d F2 SET 6, (IY+d),D""
FDCB d 85 RES 0, (IY+d),L™ FDCB d BC RES 7,(IY+d),H FDCB d F3 SET 6, (IY+d),E"

194

APPENDIX B. INSTRUCTIONS SORTED BY OPCODE
FDCB d F4 SET 6, (IY+d),H" FDCB d FA SET 7,(IY+d),D™ FDE1 POP IY
FDCB d F5 SET 6, (IY+d),L™ FDCB d FB SET 7, (IY+d),E™ FDE3 EX (SP),IY
FDCB d F6 SET 6, (IY+d) FDCB d FC SET 7, (IY+d),H" FDE5 PUSH IY
FDCB d F7 SET 6, (IY+d),A™ FDCB d FD SET 7, (IY+d),L™ FDE9 JP (IY)
FDCB d F8 SET 7,(IY+d),B"" FDCB d FE SET 7, (IY+d) FDF9 LD SP,IY
FDCB d F9 SET 7,(IY+d),c”™ FDCB d FF SET 7, (IY+d),A™ FE n CP n

FF RST 38H

195

APPENDIX B. INSTRUCTIONS SORTED BY OPCODE

This page intentionally left empty

196

Appendix C
Bibliography

[1] Mark Rison Z80 page for |CPC.
http://www.acorn.co.uk/~mrison/en/cpc/tech.html

[2] YAZE (Yet Another Z80 Emulator). This is a CPM emulator by Frank Cringle. It emulates
almost every undocumented flag, very good emulator. Also includes a very good instruction
exerciser and is released under the GPL.
ftp://ftp.ping.de/pub/misc/emulators/yaze-1.10.tar.gz
Note: the instruction exerciser zexdoc/zexall does not test I/O instructions and not all
normal instructions (for instance LD A, (IX+n) is tested, but not with different values of n,
just n=1, values above 128 (LD A,(IX-n) are not tested) but it still gives a pretty good idea
of how well a simulated Z80 works.

[3] Z80 Family Official Support Page by Thomas Scherrer. Very good — your one-stop Z80 page.
http://www.geocities.com/SiliconValley/Peaks/3938/2z80 home.htm

[4] Spectrum FAQ technical information.
http://www.worldofspectrum.org/faq/

[5] Gerton Lunter’s Spectrum emulator (Z80). In the package there is a file TECHINFO.DOC,
which contains a lot of interesting information. Note that the current version can only be
unpacked in Windows.
ftp://ftp.void. jump.org/pub/sinclair/emulators/pc/dos/z80-400.zip

[6] Mostek Z80 Programming Manual — a very good reference to the Z80.

[7] Z80 Product Specification, from MSX2 Hardware Information.
http://www.hardwareinfo.msx2.com/pdf/Zilog/z80.pdf

[8] ZX Spectrum Next information.
https://wiki.specnext.dev/

197

APPENDIX C. BIBLIOGRAPHY

This page intentionally left empty

198

Appendix D

GNU Free Documentation License

Version 1.1, March 2000

Copyright (©) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written document “free” in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or non-commercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

D.1 Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The “Document”, below, refers to any
such manual or work. Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion of it,

199

APPENDIX D. GNU FREE DOCUMENTATION LICENSE

either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection with
the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose mark-up has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is not “Transparent” is called
“Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without mark-up, Texinfo
input format, IXTEX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML designed for human modification. Opaque formats include PostScript, PDF,
proprietary formats that can be read and edited only by proprietary word processors, SGML or XML
for which the DTD and/or processing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the text.

D.2 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or non-commercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

200

APPENDIX D. GNU FREE DOCUMENTATION LICENSE

D.3 Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover.
Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying
in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a publicly-accessible computer-network location containing a complete Transparent
copy of the Document, free of added material, which the general network-using public has access to
download anonymously at no charge using public-standard network protocols. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your agents
or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

D.4 Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the

Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

e Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher of
that version gives permission.

e List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has less than five).

e State on the Title page the name of the publisher of the Modified Version, as the publisher.
e Preserve all the copyright notices of the Document.

¢ Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

201

APPENDIX D. GNU FREE DOCUMENTATION LICENSE

¢ Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

e Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

o Include an unaltered copy of this License.

e Preserve the section entitled “History”, and its title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page.
If there is no section entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

e Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a
network location for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

¢ In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

e Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

e Delete any section entitled “Endorsements”. Such a section may not be included in the Modified
Version.

¢ Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties — for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous publisher that added the
old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

202

APPENDIX D. GNU FREE DOCUMENTATION LICENSE

D.5 Combining Documents

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all
of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original documents,
forming one section entitled “History”; likewise combine any sections entitled “Acknowledgements”,
and any sections entitled “Dedications”. You must delete all sections entitled “Endorsements.”

D.6 Collections of Documents

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

D.7 Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified
Version of the Document, provided no compilation copyright is claimed for the compilation. Such a
compilation is called an “aggregate”, and this License does not apply to the other self-contained works
thus compiled with the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed
on covers that surround only the Document within the aggregate. Otherwise they must appear on
covers around the whole aggregate.

D.8 Translation

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission

203

APPENDIX D. GNU FREE DOCUMENTATION LICENSE

from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this
License provided that you also include the original English version of this License. In case of a
disagreement between the translation and the original English version of this License, the original
English version will prevail.

D.9 Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

D.10 Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License ”or any later version” applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify
a version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation.

204

